
lin
n

an introduction to computers

and computing

Robin Bradbeer

Peter De Bono

Peter Laurie

Additional material and editing by

Susan Curran

David Allen BBC

British Broadcasting Corporation

SbZ

I should like to thank Fiona, Bob, Chris,
Geoff, John, Matt, Mel, Paul, Richard and
other colleagues and friends who have
helped in the preparation and checking of
the material for this book, and in particular
Desmond Green (for photographic research)
and the designer, Roger Fletcher, assisted
by Nigel Swift.

David Allen

This book is published in conjunction with the

BBC television series The Computer Programme

first transmitted on BBC-2 from January 1982

and produced by Paul Kriwaczek

Editor of the BBC Computer Literacy Project:

David Allen

Published to accompany a series of programmes

prepared in consultation with the BBC

Continuing Education Advisory Council

© The Authors and the British Broadcasting

Corporation 1982

First published 1982

Published by the British Broadcasting Corporation

35 Marylebone High Street, London W1M 4AA

Filmset by August Filmsetting, Reddish,

Stockport, Cheshire

in ll/12pt Apollo Monophoto

Printed in Scotland by Thomson Litho Limited,

East Kilbride
ISBN 0 563 16484 0

Contents

Introduction 4

1 Setting the scene 8

2 Problems and computers 49

3 The hardware and the software 77

4 Understanding programming 105

5 You and your microcomputer 134

6 The limits to growth? 165

Glossary 192

Index 205

Introduction
Microelectronics, the silicon chip technology which has made

the cheap microcomputer possible, is transforming the economy

of the industrialised nations and increasingly affecting the jobs

and the lives of many people. Computing power is virtually the

only commodity which is falling in cost each year. It's now

becoming so cheap that the personal microcomputer is some¬

thing that will soon find its way into innumerable homes. Even

now it's in high street shops rubbing shoulders with its slightly

younger brothers, the calculators and the digital watches, which

were virtually unknown a decade ago. Unlike them, it offers a

growing number of people an intellectual challenge as well as

being a practical and versatile new tool just as capable of

controlling things as of juggling with information.

In terms of computing power what the big computer does

today the little computer could do tomorrow. Whether big or

small, all computers function in very similar ways. But what

can they do? How do they work? How can they be used in

solving problems? Where is the technology taking us? What are

its limitations? The purpose of this book (and the television

series it accompanies) is to answer these questions and to

encourage a new kind of literacy - 'computer literacy'.

4

Why 'computer

literacy' ?

The heirs to the Industrial

Revolution.
Shareholders riding in a broad

gauge train try out the
Metropolitan Line, London's first

underground railway, just before

the opening on January 10th, 1863

Since microcomputers and other similar devices are not very

different from many other technological innovations that have

changed the face of society, it helps to look back in history. The

last time something as dramatic as this happened was perhaps

when engineering got into business during the Industrial

Revolution. At that time a small group of predominantly youthful

men who mastered a new technology were vigorously trans¬

forming their world. Consider Brunei who, at the age of 27, was

the chief engineer of the Great Western Railway, hurling his

broad gauge lines like spears across a landscape that had not

changed since the time of the enclosures. What did their con¬

temporaries think of these arrogant youngsters, with their new

ideas and amazing powers?

Ordinary, well-educated people then lacked the 'engineering

literacy' which we all have now. They thought that to travel

faster than 30 mph would kill you. They thought the pressure of

5

The heirs to the Microelectronics

Revolution.

Learning to use the computer in the

primary school.

steam in a boiler would infallibly burst it. They 'knew' that steel

ships would sink. On the other hand, they thought it not unlikely

that a man could pedal hard enough to lift himself into the air.

Their notions were shapeless because they did not under¬

stand the basic laws of physics - simple enough laws that most

of us now absorb from our culture without even knowing that

we have done so. Do you not, for instance, at least have a vague

idea how an old-fashioned clock works? Even if you are not a

mechanic you have some notion of cog wheels driving each

other: a spring, a pendulum swinging to and fro, and so on. Few

people nowadays are baffled by a steam locomotive or a petrol

engine, even if they do not know the subleties of its operation.

We are the heirs to nearly 200 years of engineering literacy;

we can distinguish the practical from the absurd; we have a

grasp of the basic rules and can apply them sensibly to situations

we see around us. Computing is just the same, except that only

a few of us have yet been let into the basic secrets. The result is

6

Using this book

exactly the same attitudes that could be found at the start of

engineering: belief in the impossible, refusal to believe the

obvious - a general instability of opinion. However, it all turned

out to be quite easy last time; computing need be no different.

What we are trying to do in this book is to show that

the fundamentals are not as difficult as many people might think.

Of course, we can't, in this short introduction, teach you to build

your own computer; but that is something few of us need to

know, just as most people manage to drive a car perfectly well

without knowing how to build one - or even, in most cases,

how to repair it.

We hope to put across some of the basic ideas which will

enable you to treat the computer as a tool which you will come

across more and more often, and which you will find useful in

your daily life - much, in fact, as we treat cars today.

Some readers will doubtless have access to computers -

either their own computers, or computers at their school, college

or work. We hope this book will give them some interesting new

ideas. However, it is not necessary to make use of a computer to

follow the book, nor do we assume that you already know any¬

thing about computers, about electronics, or about mathematics.

This is not a practical handbook to any particular computer.

It is not a course in computer programming (though we do look

at the basics of programming). It is an introduction to computers,

what they are and what they do, which we hope will give you

the confidence to go on and learn more. If you choose not to

learn more, what you read here should still give you an insight

into the new technology which is fast changing our modern

world.

This book is not intended just for you to read through from cover

to cover. Of course, you can read it through chapter by chapter,

and it will make sense if you do. We hope you will use it, too, as

a source of reference, to dip into when you need some explana¬

tion. With this in mind, we have tried to provide plenty of

cross-references.

The glossary at the back should provide an explanation of

many of the technical words used in computing. In the text we

try to keep these to a minimum and to explain them as they

l first occur.

7

Setting the scene
Computers are essentially stupid. They only do what they are

told to do in instructions given to them by human beings.

Nevertheless, the things they can do - and are being asked to

do today - are many and various and are vital to our modern

way of life.

Working out
the weather

On the evening's television weather spot we see the pictures

from space of clouds and winds and then the presenters' maps

with their symbols for sleet, hurricane, rain and fog. Although

the computer doesn't come forward to take its bow, it has done

most of the work that leads up to the predictions.

The process starts with the collection of weather information.

Hundreds of weather stations round the world - on light ships,

at airports, in military posts - send information to their national

weather centres by radio and telex. Satellites take pictures of

cloud patterns and, using infra-red cameras, of the temperature

of the earth below. This information is stored in the satellite by

a small computer and transmitted by radio to earth-based

stations when the satellite is overhead. Staff at these stations

forward it by radio and telex to the weather centre.

In the weather centre, a picture of today's weather is built

up in the computer - a very big computer this time, for the

problem is enormous. Values for the air pressure, temperature,

wind speed and direction and humidity for the hundreds of

weather stations are fed in. The computer fits them all into a big

overall pattern. It then has to do a most complicated calculation:

taking the current conditions in the air over each kilometre

square of the earth's surface it has to calculate - using the well-

known laws of physics - what effect the air masses in neighbour¬

ing squares will have on it, and vice versa. This involves such

calculation and recalculation that it needs to be done on the very

largest machines if the calculation is to be done faster than the

weather happens outside the computer room. Even then, the

forecast is not terribly accurate, but it's better than wetting a

finger and holding it up to the wind. At the end of all this, the

8

Deep depression over Britain -

as seen by a weather satellite.
weather forecaster can say 'Light winds, some showers and

bright spells - warmer than yesterday'.

9

Keeping the
engine cool

In films, the dashing pilot puts on his dark glasses, vaults into

the cockpit of his aircraft and zooms off into the blue. In real

life he has a few more things to do. One of them is managing

his jet engines, for they are temperamental beasts. As the aircraft

accelerates down the runway, air is blown into the engine intakes

at greater pressure and in larger volume because the aircraft is

moving forwards. At the same time, the jet flow comes out more

easily and therefore the machine gives more thrust. This means

that the internal temperature changes. If the fuel inside the

engine burns too hot the turbines melt; if it burns too cold the

engine doesn't give enough thrust. So, as well as guiding the

aircraft down the runway, the pilot has to juggle with the fuel

flow to keep the turbine temperature just right.

10

L
.

Computers take to the air.

Concorde has 8 on-board computers

to help with navigation,

communications and the control of

cabin conditions like pressure, as

well as control of the engines.

Life is made much easier and safer for the dashing aeronaut -

and for his passengers — if a computer takes over the whole job.

It will have temperature sensors in the combustion chamber. It

will measure the temperature and pressure of the outside air (a

jet engine gives much less thrust at a hot, high airport like

Khartoum in the Sudan than a cold, low one like Benbecula in

the Hebrides). It will measure the forward push of the engine by

measuring the pressure in the final jet tube. It will measure the

fuel flow and the air speed, and the weight of the aircraft. With

all these figures, the computer will calculate and deliver the

right amount of fuel to the engine each second. Meanwhile, the

pilot can concentrate on getting the passengers from A to B

without alarm or dismemberment.

Right — the man-powered Gossamer

Condor was designed with the aid

of a computer. Above - three

dimensional representations of the

plane from the computer's screen.

11

Tracking the traffic

The latest generation of air-traffic

control radar equipment being tested.

Aircraft do not just appear as

'blips' on the screen; their flight

numbers and heights appear as

well, as a result of signals coming

from the planes themselves.

Once in the air, our hawk-eyed friend rushes along at 600 mph.

His brother bird-men, rushing at 600 mph - possibly in the

opposite direction - have little chance of seeing him coming.

If fate wills that their paths cross, an accident is almost inevitable.

To prevent these mishaps, nations with brisk air-transport

businesses provide an air traffic control service. This consists of

a network of radars whose plots are brought to one or two central

offices, where people well trained in mental gymnastics keep

track of each aircraft and steer it round those other - invisible -

aircraft that might bang into it. Usually they are successful; very

occasionally they fail.

In recent years, experiments have been made with automatic
air traffic control - at least with the collision avoidance part. A

12

computer watches the radars, calculates the position of each

aircraft, 5, 10, 15 minutes ahead and warns the controller if a

collision (or a 'conflict' as it is known technically) is likely. The

controller can then try out various decisions - if he orders

aircraft A to turn 10 degrees to port and climb 500 feet to avoid

B, will it now collide with aircraft K?

The computing required to do this isn't easy. For a start, the

blips on the screens as the radars go round and round have to be

joined up with each other. They may deflect from the straight

lines that you'd expect. The blip may disappear altogether from

time to time; the computer has to be able to work out where the

aircraft may have gone in the meantime so that when the blips

reappear they can be attached to the right track. When two

tracks cross, the computer must not think that two aircraft flew

up to each other and turned round. On the other hand, if that's

what happened, the computer must be able to follow it! It's no

good the controller telling BA323 to turn left, when the blip he's

looking at is actually KL96. This kind of predictive computing

requires a powerful machine and well written programs.

The search for
Mr Right

Computers are best at doing massive, highly defined jobs. One

of the best examples is searching through a telephone directory

to find a number. Of course, the computer needs to have all its

information stored in its electronic memory and not on paper,

but once the information is there it can search very fast indeed.

It can even be asked to find a number when the exact spelling

of the name is not known. Take Mr Bryzinski - or is it Brznski?

Type in the name as accurately as you know it and a reasonably

modest modern computer with the right program will find the

number in a few seconds or will list out the alternatives. If you

know an initial or part of his address it will then give you just

the man you're looking for, his number and his address.

Can you imagine a more redundant and costly source of

useless information than the London telephone directory -

nearly 4,000 pages of telephone numbers, many out of date and

only a few of which you will ever look up? Not surprisingly,

therefore, the French Post Office has proposed to issue every

telephone owner with an electronic way of finding telephone

numbers using a keyboard and a small screen attached to the

telephone which can communicate with a central computer.

1 They claim the costs will easily be borne by the savings in paper

by not printing directories. Electronic directory enquiries enable

other, usually impossibly tedious searches to be made. Knowing

just an address could enable the user to find the name and

13

number of the owner of a house just as easily. Equally, a search

for all the Dukes in London, involving looking at every entry,

would take about half a minute. These last two searches would

normally not be carried out for you for ethical as well as practical

reasons by the human directory enquiries service. Yet the in¬

formation is there, publicly, in the telephone book. Looking for

it using hand and eye might be a week's work; for the computer

it's no bother at all.

Home 'phone of the future?

One prototype for the proposed

all-in-one French telephone system.

Besides the electronic directory

enquiries service, subscribers will

be able to send typed messages

electronically and receive pages of

information on the screen - rather

like that on Prestel.

Bars on the Have you noticed how soup and cornflake packets have started

decorating themselves with smart patterns of black lines? They

haven't joined some secret army - it's a way of identifying the

goods using bar codes, in a way the computer can read with

relative ease. How does it read the bar code? A simple optical

wand, which looks like a fat biro attached to the computer by a

wire, has inside it a light and a lens to focus the image of the bars

on to an electronic sensor. As the shop assistant runs the tip of

the wand across the bars, the sensing element detects the

alternation of dark and light. The differing widths of the bars

form the code of a number (which is often also printed at one

14

Bar codes on the groceries being

'read' by passing them over a laser

beam - which is faster and easier to

use than a wand. The beam is

reflected back to a photo sensor.

The result for the customer is

faster service and an itemised till

slip - useful for next week's

shopping list.

side of the pattern). That number identifies the particular item

to the machine.

What's the point of all this? Well, it means that the owner of

the shop can change his prices whenever he likes. Instead of

having to employ people to go round - at great expense - to stick

new labels on old tins of soup, he just tells the computer that the

produce with the bar code '34217854' now costs 19p instead of

17p. When the check-out girl reads that code into the machine

n

EPOS BUSINESS TEAM

BAKERY .29*1
HOME N HEAR 1.95
PROCESS PEAS .15
GARDEN PEAS .15V
NIXED VIEG. .15
H/R00M SOUP .23
HEAT 2.00
RICE KRISP1S .65V
GARDEN PEAS .15V
BABY FOOD .16

TOTAL 5.90

CASH 4,00 T
CHANGE DUE .10

r,1!™781 11: 2^ 0001 1
^tional test

oFfa.(

with a wipe of the wand, 19p will appear on the till and the

customer's slip will have a full, printed description of what's

been bought.

The same effect could have been produced by asking the

girl to type '34217854' - but experience shows that she'll just

as likely type '34271854', which might be the code for nylon

stockings at £1.12.

Bar codes also make it possible for the shop operator to keep

instant accurate records of what he has on his shelves. He can

see instantly which lines are selling, and which are not. He need

keep in stock only what he needs; in these days of high interest

rates, shops make money more by cutting down their stock

holding than by increasing their sales.

15

One idea for the future - a bar-coded

Radio Times.

A few wipes of the wand feed the

computer in the special radio

receiver with the menu of

programmes not to be missed

during the week. It then knows

when to switch on and off. Note

that the first part of each code is

the same-it identifies the frequency.
Right - how the light from the

wand is reflected back from the

bar coded 'finger prints'.

Radio 4 __
1052kHz/285m
908kHz/33»)m
692kHz/434m
VHF: 92-95
f rt*qu« V

111 111 IlilllH »■•".
1150 FirsOmpress.q

no*' sir J”h" "y f„. m con-
tor re-

KC4rua”«n*t.

4.5 The Pi
Northern I
Tins summer,
to find out II
liiv pack on
talked 140 m
lrv AUhovu:t
ar« never U
minds of al

Computing the
coughs

There can be few experiences more unnerving than to hear a

group of doctors gravely discussing your chest X-rays.

The first holds the smudgy picture up to the light. 'Well, at

least we needn't worry about the lungs. Clear as a bell.'

'No, no, my dear fellow,' says the second, 'there are patches

all over. Can't you see?' and his finger stabs at the film.

'I wouldn't go as far as Charles,' says the third, 'but there's a

very worrying shadow here.'

An 'expert system' in a

Scottish hospital.

Left: A patient with acute

abdominal pain is examined by a

junior hospital doctor.

Centre: The doctor's clinical

findings are systematically

recorded on paper then entered

into the computer in a coded form.

Note the doctor's judgement

'?Appendicitis' and her note of
the computer's diagnosis.

Right: The computer compares the

pattern of symptoms with a large

number of earlier case histories and

comes up with its likely diagnosis

in this case, a 61% probability of

appendicitis.

16

'Isn't that a rib?' asks the first. 'Anyway, who's going to

Molly's tonight? It'll be quite a thrash.' And so it goes on.

The analysis of X-rays is an art. Few experts agree with each

other exactly what the smudges mean, and it is a high priority

in medical computing to try to use machines to make sense out

of what is now mere opinion. How would the computer do this?

Firstly, it has to get the X-ray picture inside itself. This is

not very difficult, using a TV camera or some other electronic

17

Diagnosis at the Toshiba Medical

Centre, Tokyo.

The X-ray image on the screen is
built up by the computer, which
holds a three-dimensional picture
in its memory of the part of the
body under investigation. This is
generated by a low intensity,
rotating X-ray beam.

scanning device. The picture is effectively divided up into

squares, small enough so that no medical feature is wholly inside

any one. The intensity of the image in the square is coded as a

number and stored in the computer together with details about

the position of the square. This is a common procedure, generally

called 'digitising' the picture. The squares that make up the

picture elements are called 'picture cells' or 'pixels' for short.

Once the image is in the computer's memory, the clever work

begins. The computer rushes around the picture trying to con¬

nect up areas of light and dark to form an idea of the patient's

body. It will have a good deal of medical 'knowledge', so that if,

for instance, the X-ray is of someone's chest, it will look for the

spine - a vertical bright line. It will look for the ribs, the collar

bone and the shoulder blades. It will then turn its attention to

the vaguer shapes - the lungs and the heart. When all these have

been identified, it can then start to make judgments about the

existence or not of 'shadows'. Programming the computer to do

this last part may turn out to be rather difficult, since no two

doctors can agree on what is a 'shadow'. The people writing the

program may work the other way round. They could show the

machine a lot of X-rays of people who certainly had TB, and let

the machine work out for itself, by a process of trial and error,

what there is in the pictures of the sufferers that is not in the

pictures of the healthy.

Of course, the problem with all these 'expert systems' (there

are many others being developed) is that by definition they do

not necessarily produce the same answers as a human expert.

How is one to judge which is right - the human or the computer ?

18

Washday wonders

The mechanical timing mechanism

from a washing machine and (right)

the silicon chip whose minute

electronic circuitry carries out the

same logical processes (and more)

with greater reliability. Of course,

the chip isn't the only component

in the new version, so the
comparison is a little misleading.

If you listen to an old fashioned washing machine at work,

you can hear it humming and ticking to itself - as well as thrash¬

ing the clothes around. The part that hums and ticks is a small

clock which turns an elaborate series of cams which switch the

various washing and rinsing cycles on and off. When your

washing machine goes wrong, it is almost certainly this mechan¬

ism that has died. Modern machines will, one hopes, go wrong

rather less often because they have a microprocessor controller.

What does the microprocessor controller do ? Really, nothing

more than the mechanical clock. It has an electronic clock that

ticks away, and an electronic counter which counts the elec¬

tronic ticks and therefore the passage of time. You may want to

wash a load of coloured clothes. The designers of the machine

have decided that to do the job properly you need a five minute

prewash, a main wash with seven minutes of tumbling once the

water has got to 170°F, two hot rinses of five minutes each, two

cold rinses ditto and an eight minute final spin. When you press

the button, or turn the dial to select the 'coloured' washing

program, a program organising this sequence is selected from the

microprocessor's memory. The first command turns on the pre¬

wash water, and waits for the water height sensor to report that

the tub is full. Water flow is turned off and tumbling starts. A

counter counts ticks until five minutes have elapsed, and then

the program jumps to the pump-out routine. When that is

finished water is let in again until the tub is full, the heater is

turned on until the temperature reaches 170°F and tumbling

starts again. It goes on until the counter has counted seven

minutes worth of ticks, and then the next stage happens.

19

The processed
word

)

A box full of electric motors, cogs and switches is replaced by

versatile electronic circuitry inside the machine. This means

that the machine can do much more complicated things - if

anyone wants it to - and that it can be cheaper and more reliable.

Most people in the West now work at 'information handling'

jobs, and quite a lot of them do boring, repetitive copy typing.

There is no reason why a computer shouldn't help here, and this

is just what a word processor - a specialised form of computer -

does. Instead of typing onto paper, and then crossing out

mistakes or painting them out with correcting fluid, cutting up

the pages to get the paragraphs in the right order and retyping,

perhaps half a dozen times, the principle of the word processor

is that you type once onto a display screen, correct the mistakes

on the screen and then when you are satisfied print out the result

as many times as you like and store it away electronically. You

can create a standard document, like a legal contract, with blanks

for the names, type the names in once and print out a completely

fresh personalised contract each time. Properly used, word

processing saves many hundreds of hours' work.

As well as this basic function of storing text so it doesn't

have to be retyped, word processors have other advantages. You

can try out different line widths. You can create spaces in the

text for photos or drawings. You can produce columns of figures

automatically and, in some systems, do the arithmetic to create

the figures. You can merge two documents together to create a

third, or pull in names and addresses from a file of customers to

print out form letters - each addressed to an individual.

When several people in an office are using word processors

- or microcomputers running word processing programs, which

is a cheaper way of doing the same thing - they can be linked

together. Then, in a magazine's office, say, a reporter can write

an article on his word processor and store it in the central file.

The editor can call it up onto his machine to see if he likes it - and

maybe change a few words, just to show who's boss. The sub¬

editor then looks at it on his word processor and corrects the

spelling and punctuation. (He may well use a special computer

program to help with this, which runs through the text, marking

what it thinks are mistakes.)

When the article is tidied up to everyone's satisfaction it can

be sent by telephone line to the printers and read straight into

20

A word-processor in a

modern office.
Left: Text which can be edited

easily on the screen is scanned for

spelling mistakes. Each word is

looked up in a 50,000 word

electronic dictionary.

Bringing it all
back home

♦

X

their photosetting machines, so there is no need for the type¬

setters to do any retyping.

Word processors could have uses in most offices and when

they are linked together we will have the foundation of the

'paperless office' in which people will communicate electronic¬

ally. Whether that will be better or worse than today's office

systems, we shall have to see.

The number and scope of technical terms in use has 9rown,

too These language factors pose an entirely different

r.hallenge rz the growing difficult* of producing correctly

speiied Q99BESEB

Rising quantities of SHBESbBI deceasing HBfli

authors, and ESDI complexities have combined to maKe

information bottlenecks more likely To make decisions, key

people in your organization information H|

availability of HH* accurate information might very will

help Key people avoid making decisions based on outdated

information, or take advantage of fleeting profit

opportunities.

* increased information volumes have been met

by hiring additional typists, placing on payrolls

and working space Today, {QEEEQEP|numbers of executives

looking for text handling and display systems to help

As we have seen, the computer is capable of an exciting and

varied range of jobs surprisingly, perhaps, since none of this

is particularly new. At any time during the last 10 years, a

computer pundit could have told you something similar. What

is new is the fact that jobs like these can now be done - in

principle, at least - by a piece of equipment small enough and

cheap enough to fit onto the desk or into the pocket. Computing

used to be a very expensive, esoteric resource. Now it is being

brought to the masses, just as cars brought travel, the telephone

and telegraph brought communication and typewriters brought

printing - of a sort. The microcomputer differs from the old, big

computers in that it is cheap enough to be part of an individual's

personal equipment to use how he or she likes. It may be used

in the home or in the office or it may dissolve the distinction

between the two, putting us back into a world of cottage in¬

industries where people work at or near their homes with their

families and friends — and their homes can be anywhere in the

world, thanks to satellite communications.

Let us take a look, then, at what this versatile machine is

and how it evolved. We need to delve quickly back into history

to see just what computing is all about.

21

A little light
history

. . . 'Words are the daughters of Earth;
things are the sons of Heaven

Dr Johnson

The Calculator's Progress

a) The abacus, which appeared in

China in about the 13th century.

b) A replica of Pascal's calculating

machine, 1642, which could add

and subtract (unreliably), using

a stylus to move the wheels.

In computing, numbers are daughters of Earth, the tools with

which ingenious man gets a grip on things.
In the history of computing the first, and vastly the largest,

step was the invention of the concept of number. Until man had a

mental tool with which to represent this very odd abstract

notion of the quantity inherent in a flock of sheep or a bunch of

grapes or a crowd of people he could do no mathematics, no

computing.

c) Henry Sutton's spiral slide

rule, 1660.

d) Sir Charles Babbage (1791-1871)

aimed to produce a machine

which could be mechanically

programmed to perform

elaborate calculations.

e) A part of Babbage's 'analytical

engine', designed to multiply,

divide, add and subtract, and
even print out an answer. It was
unfinished at the time of his death.

Soon people began to invent devices to help with the manipula¬

tion of numbers. At the simplest level, if you want to know

how many apples are left from a dozen when you've eaten

five, you have to count on your fingers, and then if you eat one

more you have to count all over again. Then some bright spark

invents the device of 'subtraction' - a set of rules that can be

applied to any two numbers. The idea of 'subtraction' is in

essence a tool just like an adze or a plough - it increases the

power of its user.

Another clever person invented symbols on paper to repre-

22

f) The Gem Calculator (1890) could

add up to £19.19s.1 ljd.

g) The Comptograph (1900), an

early commercial adding
machine.

sent numbers and showed how to manipulate them to carry out

the rules of arithmetic, which was another computing device.

It is well said in mathematics today that 'mathematics is notation'

- when you have invented a name for one of the sons of Heaven

and a way of writing it on paper you have a grip on it, you have

turned it into a tool.

The inventor of the abacus made the paper dynamic. Instead

of having to write out a new line to represent each stage of the

calculation, you flicked the beads about on the wires. They

automatically did the boring parts of the sum, leaving you to put

in the interesting parts.

h) a mid-20th Century slide rule. The Seventeenth Century and then the Industrial Age produced

i) Pocket calculator of the late 70 s. many devices for automating mathematics. Most notable of these

j) of°i98aommable calculator/comPuter were probably those of Sir Charles Babbage - an inventive
genius who is thought of as the father of the modern computer.

Not long ago the calculator for the average student was a book of

Logarithms or the slide rule but, only 10 years after the appear¬

ance of the mass-produced electronic pocket calculator, they

now seem to be very crude and antiquated ways to automate

the business of multiplication, division, raising to powers,

extracting roots and doing trigonometry.

23

During the last War it was necessary to train all sorts of people

quickly to navigate aircraft across the oceans or to calculate the

fall of shells. Vast quantities of new and complicated tables were

produced to automate the difficult calculations involved. They

were produced by the first electronic computers - Colossus at

Bletchley Park, Eniac in America and a Ferranti machine at Man¬

chester - which consisted of electronic devices counting on their

invisible fingers (hence the term 'digital computer'). These com¬

puters were also needed to decode German and Japanese military

signals which had been encoded by a machine called Enigma. It

replaced each letter in a signal with another letter of the alphabet,

choosing the other letter in a very complicated way. The first

time round 'a' might be coded as 'q', the next time as 'b', next as

'z' and then, perhaps, just as 'a'. The coding patterns were re¬

peated at very long and unpredictable intervals; to find when the

pattern repeated, it was necessary to compare each chunk of each

signal with other signals in the same series in the hope that some

common phrase might have been repeated at just the right point

to be coded in the same way. Having discovered such a link the

codebreakers could then work backwards and forwards com¬

paring the coding of the dissimilar texts. Knowing the relative

frequencies of letters in German they could often wrestle out

enough information to set their own Enigma machine (or its

representation in the computer) to the same code as the Germans

were using at the time.

These early machines filled whole rooms with radio valves

to give the calculating power of a modern pocket calculator.

Because there were so many valves, one of them could be counted

on to burn out every few minutes, severely limiting the time

during which a program could run.

They were programmed at the crudest, lowest level, and

were difficult to use. Not surprisingly a civil service committee

reported after the War that there might be a use tor just three

or four of these machines in this country.

If the radio valve had remained the standard electronic

device the computer would still be an esoteric curiosity. Happily,

the transistor was invented in the late forties. Even then it had

huge advantages over the radio valve for building computers:

it was very much more compact, used low voltages and small

amounts of power. Since then, steady improvements have been

made in the way transistors are constructed.

These improvements led to the first integrated circuit,

in which a number of transistors and other electronic devices,

together with the wiring that connects them, are manufactured

A section of Colossus I.

the first successful electronic computer, which started work in December

1943. It was used by cryptoanalysis experts at Bletchley Park during World

War II. Note the banks of valves.

25

The Eniac computer
also of World War II - at the University of Pennsylvania - gives an idea of

the size of these early electronic machines.

26

The thermionic radio valve - now
almost extinct.

in one piece. Development of this technology led to the silicon

chip, in which huge numbers of these devices are today packed

onto a tiny sliver of silicon only about a quarter of an inch square.

The course of computing since the War has been the result

of two forces. First, as transistors got smaller and more of them

could be put on a chip, so computer designers used more and

more of them to make the machines bigger and more powerful.

Secondly, the same tendency made it possible to build a smaller

and cheaper computer of the same power as those early com¬

puters. Indeed over the last decade the real cost of computer
power has halved every year. It is now so cheap that computing

can be considered a revolutionary technology. The result has

been a wide range of computers. Today they fall crudely into

three groups: mainframes, minicomputers and microcomputers.

Single transistors of the 1950's -

based on germanium.

The integrated circuit — thousands

of transistors on a single chip
of silicon.

The cost of computing

1950 - £1,000,000 1960 - £100,000 +

27

The big,
the middling
and the small

/W ^ ; i > t

A mainframe computer is a large machine costing at least several

hundred thousand pounds, which has to be kept in a specially

constructed building and has a large attendant staff of operators,

programmers and analysts. Originally all electronic computers

were like this: today only a relatively small proportion are. The

modern mainframe computer is a very powerful machine which

can handle the very large volumes of work needed in some large

companies, or very complex calculations like those required for

the Inland Revenue, or the weather predictions we talked about

at the start of this chapter.

In the sixties the processing capacity of mainframes outgrew

the handling capacity of single input/output devices, and the

techniques of 'timesharing' were introduced. A timesharing

machine has a number - perhaps more than 100 - of terminals.

The person sitting at each terminal has the use of the central

computer for a few thousandths of a second from time to time,

but the machine is so fast that it can respond to each user as if he

had the sole use of the machine.

Unfortunately for the future of timesharing, the user often

has to communicate with the central computer down inefficient

28

telephone lines - which make his access very slow. So much so

that very often the user of a small personal computer will get

easier and faster computing than the user of a terminal connected

to such a mainframe. Since this kind of machine is designed to be

used by computer professionals, it is generally quite a tough

business to make it work.

A mini is a smaller computer, costing some £10,000 to

£100,000. It may also allow timesharing, but is a less demanding

device which usually does not need a special building or the

services of more than a couple of specialists. Of course, it also

has less power and capacity than the larger machines, but the

power at its disposal is sufficient for a wide range of commercial

and scientific applications.

A microcomputer is much smaller and cheaper again - so

cheap, in fact, that each user can afford to have his own machine.

Since much of the rest of the book is about microcomputers, we

will not say anything more about their physical characteristics

here. However, there are some things worth saying about their

cultural impact.

Left: A modern mainframe

computer with enormous

computing power.

Centre: A mini computer suitable for a medium size company.

Right: A micro computer with plug-in program cartridges.

All three computers work in basically the same way.

29

How the
microcomputer
is changing
the world

The appearance of the personal microcomputer, which puts an

impressive amount of computing power on the user's desk, under

his completely personal control, is having a profound effect on

the culture of computing.

The state of computing now is very much like that of printing

and book publishing at the time Gutenberg and Caxton first had

their printing presses up and running. Before that, book making

was a very big performance indeed. It was carried out very

slowly, by hand, in monasteries, at great expense. Only dukes

and kings could possibly afford to have books made and because

dukes and kings spent all their time fighting in order to stay rich,

many of them had no time to learn to read. When they'd got their

Book of Hours or Life of St Jerome, it was of no use to them in

the way we would find a book. They couldn't curl up with it for

a good read by the fire before going to bed.

Of course, they didn't want books for that. They com¬

missioned them first of all because, by doing so, they kept in

with the people who controlled the actual executive power of

the state. Secondly, books were commissioned because they were

magical and prestigious treasures which contained the laws and

scripture that controlled ordinary illiterate men's lives.

The alert reader will detect an intended similarity between

this description of books and the big computer programs and

installations of our day. Books were commissioned by people

who couldn't read and were made in remote monasteries at vast

expense. Computer'programs are commissioned by managers

who are unable to understand them and written in remote offices

belonging to companies like IBM and ICL.

This analogy can be continued with the printing press which

can put identical, cheap text into the hands of everyone who can

read. Imagine Caxton printing the obvious thing - the Bible -

and then some Royal proclamations and a tide table or two, and

is standing at the door of his shop twiddling his thumbs and

worrying about cash-flow when who should walk in but the

author Mallory with the Morte d'Arthur - a cracking good yarn

of tin-clad folk - under his arm, and Caxton is off into a whole

new industry - book publishing.

This is very much like the computing business again. The

microcomputer is like the printing press that puts computing

power - literature - into every literate hand. The Bible is the

obvious book to print because it has been handwritten in large

numbers. There's a market for it. It corresponds to the payroll,

stock control and word processing program packages that

inundate the microcomputer world. However, having produced

30

The old and the new Latin;

incomprehensible to the layman

but giving power to those in

the know ?

those, the microcomputer market is twiddling its thumbs, looking

for something which as yet hardly exists - the computing

equivalent of Mallory with a novel under his arm, and a whole

new industry in the offing. In fact he is emerging here and there

and no doubt in 50 years time historians will be able to point to

our very own data processing Shakespeare whom nobody

recognised till much later.

One can see how things were in 1477 when Caxton had

just started. The monks from the monasteries were saying that

ordinary people would never learn to read, that books needed

individual attention and that any suggestion that a book - a real

book - would ever cost less than 100,000 crowns was the most

irresponsible folly. Well, the printed word and mass literacy

caught on quite well, and produced many changes in the then

world that no-one foresaw - among them being, perhaps: the

decline of Latin, the rise of national languages and nationalism,

public opinion, mass marketing, bus tickets and other advantages

too numerous to mention.

There are some people who think that the mainframe com¬

puter with its hordes of salesmen, computer scientists, systems

analysts and applications programmers is as doomed as the monks

from the monasteries doing their gold leaf illuminated letters in

the quiet cloisters at the cost of an arm and a leg a volume, for

battle-hardened clients who could hardly sign an 'X' at the

bottom of the contract. It will be interesting to see what changes

its successor brings about in our modern world.

euuu
>"l‘ 1 ^utf.Uz

trlifm di etpctni iu6up
" r""w T

xisinare pf jus caxpujditn
Aijrcipwi

no Sciiinoue disapuhis

SaiTRrioainn nusuahe*
»•+*»

^Xtus scam d u t n caiui c
c Wt ftefrr*-* s* 5*1**ra

tanta Gotiumsiisadpu c
e»*ir**r $*•> ri*^1 tti

- vpi cuaurotiuTn lUTcalicx
•fftar ** .&» ,n itm

Squ6sio offruoajsiuco

loop-stack pointer storage location, are set up corr
to send Xtal?s original routines on a tour of our
the beginning of the IF-.-THEN statement, so we do i
By changing the contents of 1812 HEX to: JR INIT,
called, control first passes to a new INIT routine w
the counters and sets up the stack pointer.

INIT, PUSH HL., DE, BC, AF
LD DE,0E7AH
LD HL,TABLE
LD BC,06
LDIR
PGP AF, BC, DE, HL
JP Z 1416H; The? jump in Xtal ’ s RUN routine

which we replaced with the jump
to INIT

JP 1815H; Jump back to Xtal’s RUN
TABLE,7AH OEH OO 00 00 00

As I said at the beginning, the purpose of this art

31

What does it do

and how does it
do it?

'Canomorphic hardware with

interactive anthropomorphic

software' - new Latin for 'K9'

from 'Dr Who?'

Some people have a 'science fiction' view of computers - they

think that they have an intelligence of their own, and if we're

not careful, will eventually take over the universe. In fact, the

opposite is true. The computer is a very stupid device. All it does

is execute, with the minutest precision and at great speed, the

instructions it has been given. It has no way of telling - except

through further instructions written into it - whether what it is

doing is sensible or foolish. It has no mind in the human sense;

it has no more mind than a lawn mower.

There is 'intelligence' in what the computer does - but that

intelligence is provided by its instructions, and by the human

being who writes those instructions. The computer is just a tool

which the human uses for carrying out his computing activities.

As we saw in our quick historical review, computing is nothing

new, though the electronic computer as a tool for computing is

still a novelty to most of us.

What can this tool do ? This depends on what we ask it to do

but, basically, all its functions are built up from a few very

simple activities. The most important are that it can:

add two numbers together;

subtract one number from another number;

compare two numbers or symbols to see if they're the same.

What use is that? You might well ask. In fact, a lot of use. It is

because the machine can do such a tremendous number of these

very simple things in a short time that it can be used for such a
wide range of applications. When we come to look at the parts

of the computer, we'll be able to give you some examples of this

speed (see page 47).

Building up

the skills

First, one example of the way these simple operations - adding,

subtracting and comparing - build up to make real-life computer

applications. Remember our search for Mr Brznski (page 13)?

The computer could find his telephone number by comparing his

name, letter by letter, with every name in the telephone book.

We're dealing with letters - so how do numbers come into it?

A simple scheme might go something like the one described

below.

Each letter is stored in the computer as a code number.

Suppose for simplicity A is 1, B is 2 and so on. The first name in

the telephone book might be 'AAA Minicabs'. The computer's

program would tell it to take 'Brznski' and compare the code for

32

its first letter (2) with the code for the first letter of the first

entry (1). Its instructions would be to take each name in turn

and compare the codes until the two first numbers were equal

(then it would have found the Bs). Its next instruction would be

to compare second letters (R might be 18) until they were

identical (which might be for 'BRAACHEN') and so on, until all

the word matched. Only then would it print out the result. It

sounds tedious but it's actually very much like what we do when

we look up a number except we don't bother with code numbers

and we take short cuts because we know that B is near the

beginning of the alphabet and R is two-thirds of the way down it.

This job of comparing symbols is one that the computer does

frequently, particularly when it is processing text. It is unfor¬

tunate that we think of computers as being about mathematics

because in real life they spend most of their time comparing parts

of words to see if one is the same as another. After all, this is

what our brains spend a lot of time doing. If someone says 'Meet

me at the Festival Hall' you have to compare the word 'meet'

with a dictionary in your head until you find the right word and

discover that you are meant to 'come upon, fall in with, find'

(OED). A similar procedure is used with the other words - in

particular 'Festival Hall', which obliges you to look up some kind

of map in your head or on paper telling you how to get there.

From time to time, mathematics is called for. The mathemat¬

ical abilities of the computer have to be built up from the same

simple tricks: addition, subtraction and comparison. Later, we

shall see how the computer combines these operations at great

speed to enable it to do very complex calculations.

From electronics
to counting

You are probably wondering by now how a computer actually

carries out these operations, and why it treats numbers and

letters as being just the same when, to us, they are quite different.

To explain some of this, we must first go back to look at elec¬

tronics, and find out briefly what it means.

Electronics involves electricity. In a computer, information

is sent as patterns of current down the wires and through the

transistors and other devices in the electronic circuit. These

patterns can change hundreds of thousands of times per second

as the currents go on and off - and that is the secret of the com¬

puter's speedy operation.

In fact, the patterns make up the basis of the computer's

numbering system. Each part of the pattern is called a 'bit'. We

33

(

S*

do most of our arithmetic on a numbering system based around

10 - the number of our fingers. We count up to nine, and then

use the tenth digit to 'carry one' over to the left. Using pulses of

current the computer can only count up to one! In fact it has two

options: a pulse of electricity, or no pulse. To the computer,

that's a 1 or an 0. Os, in this system, become very important.

It's binary!

Two real life examples of 'binary'

patterns - where something can be

in only one of two states. Right -

each traffic light can only be 'on'

or 'off'. Left - Well-disciplined

Soviets hold their cards up one way

or the other to create the mascot

'Mischa' at the opening of the

Olympic Games in 1980.

DECIMAL
BINARY
EQUIVALENT

0
i

0
i 1

2
i

10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 mi
16 10000

The numbering system, based on Is and Os, is called 'binary', and

this is how it works. We start off just like we do in decimal

counting: 0, 1. Then we have to 'carry one' to count any further,

so 2 in decimal becomes 10 in binary, 3 becomes 11, 4 becomes

100 and so on. Try working out for yourself what 10100 and

110011 in binary would stand for*. The computer can manipulate

these binary numbers just as we manipulate our decimal num¬

bers, adding and subtracting them in the same kind of way. For

human beings, it's hard work, though, as you will find if you

try it. So you will be glad to know that, except in special cases,

you should never have to use binary in talking to the computer.

*(10100 is 20; 11011 is 51).

34

Two binary 'bit' patterns -for the
numbers 162 and 220.

Inside the computer a T means
that there is a 5 volt supply to a

particular part of the circuit; '0'

means no voltage at all.

Series and parallel: two ways in

which binary patterns can exist in
the computer.
In 'serial' form the patterns appear

as a stream of 'on's' and 'offs' one
after the other - rather like the

pulses of current produced by the

electrical circuit shown (a). In

'parallel', eight values can exist

simultaneously along eight parallel

circuits similar to the circuits

shown (b)

JUl_TL
10100010 11011100

As well as calculating in binary numbers, the computer also uses

binary codes to represent the rest of the characters on a standard

typewriter-type keyboard. In the chapter on programming

(Chapter 4) we show how the computer tells which groups of Is

and 0s it should treat as characters, and which as numbers.

Some of the codes representing
letters and other characters

in the computer.

These are in a sense arbitrary but

there is an internationally agreed

convention - known as ASCII the

American Standard Code for

Information Interchange.

CHARACTER NUMBER BINARY CODE

B 66 01000010
I 73 01001001

T 84 01010100
; 59 00111010
i 63 00111111

35

What is the
computer
made of?

All computers consist of the same fundamental parts, whatever

their size:

1 Input devices which take in information from the outside world

and convert it in one way or another into the binary code which

the computer can cope with. For example, a switch, a keyboard,

a microphone or a temperature sensor - each could be an input

device and the computer might have one or a number of them.

2 A memory - which can store information from outside, including

the instructions which have been given to the computer. These

are called its program (usually spelt with one 'm').

3 A central processor, which acts as the 'brain' and processes the

information in accordance with the program of instructions.

4 Output devices which receive the messages from the computer

and do something useful with them: it could be by producing

messages on a television screen or a printer or operating a motor,

a loudspeaker or a heater (as in a washing machine).

The memory The memory is just what it says: the place where the computer

keeps information when it is not actually working upon it. We

can think of it consisting of several thousand 'letter boxes' or

'pigeon holes'. Information is held there as bits of electric charge.

36

In a particular spot in the computer there either is a charge or

there is not, so it's for this reason that computers understand

binary code - 0 means no charge, 1 means a charge (analogous

to morse code, except that whereas morse consists of patterns of

dots, dashes and gaps, binary information consists only of

patterns of dots and gaps). Some of the patterns represent num¬

bers, as we have seen, and some can represent characters. The

memory can store numbers and characters and these can be

fetched by the processor. Each Tetter box' has an address, which

is also a number. The processor (see below) can connect itself to

any particular memory location - a particular letter box - by

specifying its address.

In most microcomputers, there are 65,536 memory locations,

with addresses going from 0 to 65,535. Why this exact number?

The answer is that most microcomputers deal in chunks of

information eight binary digits, or 'bits' long. Eight bits is called

a 'byte', and has become the standard computing unit of in¬

formation simply because it fits conveniently into several

different uses. One reason is that you can easily code the

characters of the keyboard using 255 symbols and 255 is the

decimal number which is equal to 11111111, the highest number

with eight digits in binary.

Two bytes, when used together as an address for the com¬

puter's memory, give 28 x 28 = 216 = 65536 different numbers,

and that is how many memory locations the ordinary micro¬

computer can cope with. (The obvious next step would be to

have three address bytes, which would give 28 x 28 x 28 =

224 = 16,777,2 1 6 locations.)

If we think of each memory location as keeping its stored number

on an ordinary postcard then all the postcards, laid end to end,

would stretch out for nearly five miles.

The processor can connect itself to any one of these 65,536

boxes. It can 'write' electronically onto the card there, or 'read'

back the number that was written last time, in a quarter of a

millionth of a second. In other words, it can read every number

in every address of its memory in a sixtieth of a second. It's this

speed that makes the very simple things a computer does useful:

it can do such a tremendous number of them in the time it takes

you to blink.

Each individual memory location has a capacity of eight bits

(in the normal system used by microcomputers). So it, too, can

store numbers up to 255. If the computer needs to store larger

numbers, or anything else which doesn't fit, it has to use several

memory locations for each number.

37

We have talked about the computer using pulses of electric

current to indicate its Is and Os and that it manages to store this

information in a memory. Inside the memory the information is

held as minute charges of electricity. Unfortunately, the system

only works when the computer is switched on. When it is

switched off, the information is lost and consequently different

types of memory storage are needed to hold information which

the computer needs to keep (or you, its user, need to keep) for

longer than it takes to run a program. We look at these different

types of memory on page 87.

The processor The processor has a lot inside, but in essence it is just like a

black box which takes numbers or characters from memory and

operates on them using instructions also taken from the memory,

such as 'add', 'subtract' or 'compare'. After that it sends the

results back to the memory or elsewhere.

A crucial feature of the processor's relationship with memory

is that it can use the number stored in any location either as data

or as instructions. The difference between them is quite simple:

the instructions tell the computer to do something, the data is

what it does it with. This gives the programmer (if he is working

directly in the computer's binary codes) a great deal of freedom,

and allows him, for instance, to write much bigger programs than

can fit into memory at one time. He can do this by writing a small

bit of program that tells the processor to take the new bits of the

main program from a storage device and put them into memory.

Once in the memory, they can be treated as instructions working

on the data in other bits of memory.

Silicon chips We are talking glibly about the processor and the memory - but

what are they? What do they look like? In a modern computer

they are likely to consist of one or more silicon chips. A chip

is a piece of silicon a quarter of an inch square, covered with very

fine metal connections joining together thousands of transistors.

It is hermetically sealed in a plastic case usually with 40 metal

legs, so it looks like some sort of mechanical centipede. In today's

microcomputer each memory chip generally holds 16,384 bits,

so the 65,536 bytes of a complete memory takes 32 such chips.

It is important to remember that a microcomputer is the total

package. It will usually consist of a board containing the silicon

chips and various connecting bits and pieces. It will have a

means of inputting and outputting information, from one or a

number of input and output peripheral devices. It may well be

as big as a couple of electric typewriters and cost anything up to

The chip exposed:

Top left: A memory chip fully

packaged (about 2 cms long).

Top right: Looking down on the

chip itself after the outer plastic is

removed. Note the fine gold wires

which connect the chip to the

centipede-like electrical connections.

Below left: Microscopic view of the

minute electrical components which

make up one quarter of the chip.

Below right: An electron

microscope's view of just a few of

the individual transistors

(magnification x 2040).

£4,000. The microprocessor in this case is just the main chip. It

weighs perhaps an ounce and costs around £5. If the micro¬

processor is the main chip in the typical microcomputer, it is also

possible now to produce virtually the whole microcomputer on

one single chip which contains within itself the processor and

the memory and a good deal of the input and output electronic

circuitry. Such chips have particular programs of instructions

'burned' permanently into them so that they can be dedicated to

doing particular tasks - like controlling a model train or a wash¬

ing machine. The 'dedicated' microcomputer chip is likely to

find its way into a vast range of domestic, industrial and com¬

mercial equipment - from the television game to the latest tea¬

vending machines to the computer in next year's car.

39

'Mass' or 'backing' storage.

Right: Large magnetic tapes of a

mainframe computer.

Below left: A hermetically sealed

'hard disc' unit with a mini

computer.

Centre: Hard discs in safe keeping.

Right: 'Floppy discs' and cassette

tapes, used by a typical

microcomputer.

Mass storage A most important part of a microcomputer is its 'mass' or

'backing' memory storage. This plays the same part in its

organisation as a filing cabinet does in an office. You can keep

programs and data in the backing store in the same way as you

would keep documents in the filing cabinet. Whenever you need

a particular reference you go to the cabinet and get it out on the

desk. Whenever you need some information in the backing

storage, you connect it to the computer so it can act as part of

the machine's memory, ready for computing to be done.

Unlike the computer's internal working memory, the in¬

formation kept in backing storage is retained even when the

storage medium is not connected up to the computer, or when

the computer is switched off. That is one reason why every

40

computer that is going to act as more than a quick calculator

needs to have some form of backing storage available. The other

reason is that the computer's internal 'working' memory is not

large enough to hold all the data the computer needs to work on,

so it needs to be able to keep it in this external reservoir. The

low-cost microcomputer uses a low-cost backing store, which is

almost always cassette tape in a standard cassette recorder. The

advantage of this is cheapness; the disadvantage is slowness.

To get at a particular program or file of data you may have to

reel through 15 minutes of tape, which is tiresome and not at all

practicable for any kind of serious computing, although it's fine

for the beginner who isn't in a hurry.

'Serious' microcomputers use 'floppy discs' which are rather

like gramophone records covered with the same magnetic

material that coats a cassette tape. The floppy disc is slotted into

a disc drive where it is spun at several hundred rpm while a

read/write head is moved over it from edge to centre. By putting

the head in the right place, the data in that 'track' can be read in

a few thousandths of a second. The floppy disc is a much more

manageable way of storing data than a tape, because any chunk

of data on it can be retrieved in - typically - about one-fifth of

a second. 'Floppies' come in two sizes - 'mini', which store

between 80,000 and 500,000 characters and 8-inch which store

between 250,000 and half a million characters (remember: six

characters go to the average text word).

A recent development is the Winchester or 'hard disc'. In

this system the disc is fixed in the machine, which means that

all the mechanical clearances can be much smaller. By this

method the head can get closer and write much smaller patterns

of magnetism onto the surface, and so an 8-inch hard disc can

store up to eight million characters a side. Because all the

clearances are so small, and therefore there's no room for dust

and fluff, the disc has to be hermetically sealed. A hard disc

system small enough to fit into a desk drawer can hold a maxi¬

mum of 140 million characters - equivalent to about 11 years

non-stop typing, eight hours a day.

Input Getting information into the computer system essentially means

converting information in one form into electronic signals that

can be recognised by the computer. The most popular method

of getting information into a computer is through a keyboard.

This bears an external resemblance to a normal typewriter key¬

board, except the depression of a key causes a series of electronic

pulses to be sent to the computer. The keyboard can be part of

41

A touch sensitive keyboard in a

computer costing less than £100.

When the keyboard is pressed,

electrical contact is made between

two thinly separated metal

connectors as they are squeezed

together.

INPUT

the computer housing, or a separate unit, usually with an attached

video screen or a printer. In fact, the first keyboard units were

based on the ubiquitous teletype that, in one form or another,

provided telex links throughout the world.

The cheapest method of producing a keyboard is to have

two layers of plastic with a conducting membrane in between.

The most expensive use highly sophisticated electronic, and even

ultrasonic methods.

Most keyboards have the usual 'QWERTY' layout, and are

capable of producing both upper and lower case letters. Some

smaller keyboards look like calculator pads, and are usually used

to enter data and instructions in the computer's binary code.

There are other methods of getting information into the

computer. The most obvious is to connect it up to the electrical

impulses produced by the electrical or mechanical system being

controlled. This is how most industrial computer systems get

their information. Sensors in the system convert mechanical or

environmental data - like temperature, displacement or speed —

into electronic signals that the computer can deal with. We saw

this type of operation in several of the applications we described

at the start of this chapter - for instance, in the sensors that

measured the temperature and pressure for the jet engine and

the water level for the washing machine. You will recall some

42

of the other input methods that turned up in those examples,

too: the optical wand that reads bar codes, the camera that scans

X-ray pictures and so on.

Another method of putting in information is by using speech

recognition. We look at this (and at speech output) in Chapter 6.

There are also input devices which will accept hand-writing, as

A 'graphics' tablet.
Wherever the pen touches the

writing surface, detectors in both of

them register exactly where it is

and tell the computer the
co-ordinates. It can then use the

information to store or reproduce

what has been drawn in some

electronic form.

you write, or pre-typed or printed pages. There are 'graphics

tablets' which let you draw with an electronic pen. There is also

something called a 'light pen' which lets you draw on the surface

of the television screen directly. You have probably heard of the

punched cards, or paper tape, which were used to input in¬

formation to mainframe computers. These are out of date today,

however, and increasingly little used.

Output

Our put

There are just as many ways of getting information out of the

computer, including many different sorts of actuators that make

the computer directly control operations. For the microcomputer

user the video display unit and the printer are the most common.

The video display unit
The video display unit - or VDU - can range from the domestic

television set to an 'intelligent' terminal that has one or more

microprocessors inside. A screen that can display 25 lines of 40

characters can hold up to 1,000 characters of information. It takes

memory to store this. In so-called 'memory mapped' systems,

43

A high resolution graphics picture on

the screen, made up of small picture

cells or 'pixels' (reminiscent of the

Russian bear on page 34).

each character position on the screen corresponds to a particular

memory location in the video memory. All the computer does is

transfer the contents of the memory onto the screen. As each

memory location can store one byte - of eight bits - this means

that 28 or 256 different characters are available. The codes in the

memory are interpreted into actual letters and graphic symbols

by a device called a character generator. Needless to say, all this

memory detracts from the amount of memory available for use

in the system by the user.

Another method of generating video information is to split

the screen into a series of separate points, say 312 x 210. This

requires more memory. Each point on the screen now corres¬

ponds to one bit in the memory, hence eight points require one

byte of memory; 312 x 210 points therefore need 8,000 bytes.

This high density graphics capability is available on a num¬

ber of computers. It is a useful facility for educational users and

for games and hobbies but, unless complicated graphical analyses

are needed, is not really necessary for business use.

Printers
There are many different types of printer available for computer

users. These range from simple printers from £50 to those of a

standard word processor at about £2,000.

One way of generating good quality printed output is to use

a converted electric typewriter. Sometimes systems using these

will allow the keyboard to be used to enter information as well.

A teletypewriter is electromechanical in construction, with a

keyboard for input and an impact printer (a type cylinder) for

output on paper which is stored as a roll in the machine. The

speed is modest, usually 10 characters a second. Other disadvan¬

tages are that the machine is loud and usually only prints

capitals. However, secondhand teletype machines can be bought

quite cheaply.

Another method of producing characters on a page is by

printing dots based on a 5 x 7 matrix. Most characters and

graphics symbols can be generated in this way. The simplest dot

matrix printer consists of seven needles in a vertical line that are

'fired' onto the paper as the head moves from left to right. Five

such 'firings' are needed to produce each character (see p. 95). A

normal typewriter ribbon means that normal paper can be used.

It is possible to do quite complicated characters with dot matrix

printers as each needle can be programmed individually. If the

computer used has a graphics capability, a dot matrix printer

must be used otherwise these characters will not be printed.

44

A cheap dot matrix printer
capable of reproducing text and

graphics. (For a diagram of how it

works see page 95). This kind of

printer is ideal for all but work

demanding the printing of high

quality text.

A 'daisy-wheel' printer

which produces high quality print

at over 100 characters per second.

If good quality output is required then a specialised printer

is necessary. The 'daisy wheel' printer is a form of impact

printer that has all the characters around the rim of a circular

plastic disc. A hammer hits the appropriate character to produce

the printed symbol needed. These are rather expensive when

compared to other sorts of printers but give good quality at high

speed. The print head can be changed to give different typefaces.

Most daisy wheel printers can be programmed so that right and

left justification with proportional spacing is available. They are

designed for word processing applications (see page 20).

All the printers mentioned use impact technology, and rely

on ink coming from the typewriter ribbon to create the image on

paper. They also use normal paper. There are other ways of

45

getting image onto paper and some printers use these methods.

Heat sensitive paper is used by a number of small printers.

These usually have about 40 characters per line. A small dot¬
matrix heating element moves across the paper and where a hot
spot is created a blue dot appears on the page. They are quick
and, because there is no impacting, very quiet. The paper is

rather expensive, however, and is usually only available in

2-inch to 3-inch wide rolls.

Architects and designers use 'plotters', another special form

of output which lets the computer draw like a draughtsman.

At the top end of the market are 'inkjet' printers which spray

a fine jet of ink particles at the paper as it travels past. They are

silent and very fast and many suspect that the Japanese will soon
produce cheap versions to replace the more popular mechanical

printers being installed in offices at present.

A complete 'up-market' desk-top

microcomputer system.

Small plug-in cassette tapes are

used to store programs and data.

The high resolution graphics on the

screen can be reproduced on paper

using a built-in 'thermal' printer.

46

How fast
is a computer ?

So far in this chapter we have put a lot of stress on the fact that

although the basic operations of a microprocessor are very

simple - add, subtract and compare - its overall effect is quite

clever simply because it works so fast.

In about the time it takes for one

stroke of the typewriter a small

computer would be capable of

searching through the electronically

stored version of this dictionary,

performing half a million steps.

47

\
I

I

It takes about eight seconds to multiply two 16 digit numbers

together a thousand times. A typical spelling correction program

would look for a word in a 25,000 word dictionary held on

floppy disc, and report whether it was there or not in about

one-fifth of a second. That is many times faster than a human

being could do the same job. Try timing yourself. On the other

hand, a human wouldn't bother to look up most of the words

because he or she would know by looking at them whether they

were rightly or wrongly spelt.

It is not hard for a careless programmer to squander pro¬

cessing power so that his program ends up taking a long time to

do apparently simple things. The slowness comes because the

computer spends most of its time working out what the pro¬

grammer wants it to do, rather than actually doing it. However,

the personal computer doesn't have to work very fast: most of

the time it's waiting for its user to type something at the key¬

board.

An expert typist can work at 100 words per minute: that's

about 600 characters per minute, or 10 characters per second.

In the time it takes to type one character the processor can carry

out nearly half a million steps. However, in many cases the speed

of a microcomputer is not of crucial importance. Mainframe

computers cost so much that processing time - 'Mill-time' as it is

called in the trade - is rather important. If your program takes

too long to run you are wasting an expensive piece of capital

equipment. Since a microcomputer is relatively cheap and has,

usually, only one user, these considerations do not really apply.

The question is: 'Would I rather do the job by hand?' and the

answer is often 'No'.

What jobs can we - actual or potential users of personal

computers - decide to do on our computers, though? That is a

question we start to look at in the next chapter, when we consider

problem solving on the computer.

48

Problems and
computers

49

Behind each of the applications of computers we described in

the last chapter there lies a problem - for example:

1 How to make sure that aircraft jet engines run at their highest

power setting for take-off without overheating.

2 How to develop a cheaper, quicker way for people to find

telephone numbers without having to issue every household

with a fat directory.

3 How to link supermarket sales with warehouse stocking so that

stock levels are kept as low as possible without ever running

out of a product.

These are clearly sizeable problems for British Aerospace, or

British Telecom or for Tesco's, let alone for us, so what about

including some simpler problems to look at? For example:

1 How to produce something for testing a child's multiplication

tables which allows the child a number of'goes' before giving the

right answer.

2 How to draw up a fixture list for local league football, so that

(as far as possible) each team plays every other team - both at

home and away - and the teams play at home and away alternate

weeks, each team having a fixture every week.

3 How to tune a piano.

4 How to find the best route between London and Godminster.

5 Controlling a greenhouse.

Perhaps the computer could help in all of these - we shall see.

However, we shall start not by looking at the computer at all

but at the nature of the problems and at the ideas and techniques

of problem solving. Then we shall see if the computer fits in and

in a later chapter go on to solve one or two of the problems with

the aid of the computer.

What do they have in common, that makes us describe them

as problems? Not very much, you may think. But they do all

have three basic elements:

1 We have some basic facts about each problem, which define it

make it unique. We understand, at least broadly, just what the

problem is. Take that first problem, for instance. We already

know we're talking about:

jet engines

aircraft take-off

50

Solving the
problem

PRoeueH

the need for the highest possible power setting

the need for safety

the danger of overheating.

2 There may not always be one perfect answer which completely

solves the problem.

3 There is a gap between the problem and the answer. We don't

already know the answer, or there wouldn't be a problem.

Sometimes, admittedly, the gap is so small that we hardly think

of the problem as a problem at all. It may be a problem to choose

the best route to Godminster, but it's not difficult to choose the

route we'd take to call on our next door neighbours. Or is it?

We might go from our front door to their front door, our back

door to their back, or even squeeze through the hole in the fence.

If we're planning to burgle them, we might opt to go through the

kitchen window. Perhaps even that problem takes a bit more

thought than first seems likely?

So much for the problem - what of solving it? In everyday

language we use the word solution to mean two quite different

things.

1 Sometimes we mean the answer to a problem. So, the solution to

a crossword puzzle clue is the word we write down in the puzzle;

the solution to an arithmetical problem is the number we come

to when we have worked it out.

2 Sometimes we mean the way of finding the answer. In this sense,

we have solved the problem when we have discovered how to

reach the answer. Getting the answer - putting the solution into

practice - is a quite different step.

To avoid confusion in this chapter we shall only use solving and

solution in the second of these two ways: to mean the working-

out of how to reach the answer.

Bearing this in mind, what are the steps involved in problem

solving, and how can the computer fit in? They are as follows:

1 First there is a problem - sometimes you may feel you under¬

stand the problem completely - perhaps you are quite clear how

to tune a piano, for instance. With other problems, you won't

have a clue where to start.

2 The next step is to analyse the problem - make sure you know

what it consists of. We shall look at this in more detail later in

the chapter.

51

Then we have to solve the problem - work out how to reach the
answer.

Next we carry out the solution - carry out the calculations, test a
possible answer to see if it works.

Finally, we come to the answer - and we don't have a problem

any more.

What can the
computer do?

We can rule the computer out of stage 1 - the problem - straight
away. With any luck the computer is helping to solve our

problem, not creating one! But can the computer analyse the
•problem? Basically, the answer is no. This is a piece of hard

work you have to do for yourself.

The computer is also not able to solve problems in the sense
in which we're now using the word 'solve'. You have to solve
the problem yourself, work out how to get to the answer. Then
you tell the computer this, in the form of a program; what the
computer does is carry out your solution and provide the answer
for you. Not very impressive, you may think. But it can be
enormously helpful in some circumstances:

1 If the problem is a routine one, which you solve in the same way

repeatedly - you might do the same calculation frequently on

different figures or use the same technique to find many different

phone numbers.

2 If the solution is simple, but carrying it out is slow or difficult -

you know how to do a maths problem, but the particular num¬

bers in this one make the calculations cumbersome; you know

how to set about finding a phone number, but the size of the
directory makes looking it up a slow job.

3 If carrying out the solution is, quite simply, impossible for

humans - it may need to be done too quickly, or in nasty condi¬

tions, or the inevitable mistakes which humans sometimes make
might lead to major disasters. Think, for instance, of the problem

of reacting in time to changes in a chemical process reaction, or

to the cooling system of a nuclear reactor.

It is therefore people who solve problems. Computers are a tool

for helping them carry out the solutions. Now we'll look/
in turn, at three aspects of this use of the computer to help people

solve problems.

First the analysis of the problem: deciding what it's all about/

and selecting or discovering a solution. Secondly, we'll review

52

the kinds of solution that computers can carry out. Then in

Chapter 4, we'll look at programming, the way in which people

tell computers how to set about carrying out that solution.

Looking at the
problem: analysis
and solution

What are the facts?

Why can people alone solve problems, and not computers?

Simply because people alone can think. Computers, whatever

their other uses, can't think for themselves, and problem solving

involves a great deal of thinking.

All the same, many people don't think of themselves as good

at solving problems. Ask them how they found a solution, and

they might say:

'It's common sense, isn't it?'

'Oh, I've a sixth sense for these things.'

You may not need special training to solve many of the problems

you come across day by day: they solve themselves, almost

without your realising. However, you do need to be trained to

set about solving the difficult ones. These need a bit more

thought, and our purpose is to show you some ways of channel¬

ling and structuring that thought.

That is what analysis is all about: thinking about a problem,

but in a structured way. What structure? Well, it all depends on

'what problem'! But since we've already introduced the start of

a structure, we'll use that. It consists of the three parts we saw

that every problem has: the facts, the answer, and the gap.

It's a help to make a note of all the facts we already have about

our problem. Why? Because that's a good way of finding out if

we have enough facts. Do we know enough about each fact?

Are there vital facts we don't have at all?

We'll take a couple of our problems. See what facts we have,

and what facts we will need.

The fixture list
What do we already know ? We know we're talking about a foot¬

ball league, but how many teams are there? Clearly we must find

that out. Let's say there are 10 of them: that will mean 18 games

(one at home and one away with every other team) for each team.

We know we're talking about the fixtures for one season.

How many dates is that? Let's say our league plays on Sunday

53

afternoons. Ideally, the season will consist of 18 Sundays, but if

we can't schedule matches to fit in like that, we could extend it

by, say, two Sundays. So we have a maximum of 20 dates on

which matches could be played.

Is there going to be one right answer to the fixture list

problem? Probably not. There are dozens of lists we could end

up with. But some will be better than others. Let's think for a

moment about which one we want.

Well, it is absolutely essential that each team should play

each other team at home and away. We would therefore reject

any answer in which that didn't happen. However, if there are

lots of lists in which this happens, what else would we be looking

for? We've already mentioned two other features which, though

not essential, are very desirable: that the teams should play at

home and away on alternate weeks, and that each team should

have a fixture every week. To decide just which answer we

want, we'd have to decide how these compare in importance.

Suppose that we're prepared to go up to our 20 date limit

to the season, in order to ensure that the home and away matches

are well distributed. However, if we can distribute them evenly

over an 18 or 19 week season, that would be preferable.

Are there any other factors to be considered ? We might, for

instance, want to think about how far the teams have to travel

to away matches, or in what order they play teams from the top

and bottom halves of last year's league table. Do we want these

facts at this stage, then? On the whole, probably not. Let us first

see if we can find a list which meets the guidelines we've already

chosen. Then if there are several which do, we'll think about

whether it's worthwhile getting more sophisticated in our

solution, to choose between them.

Route finding
The example we are using here - how to get from London to

Godminster - is an imaginary one, with imaginary places on the

way, like Camford and Little Wittering. In real life we might

be trying to develop an enormous data bank of information

which would enable, say, a travel agent to help tourists to decide

how to get from place to place right across the country. Some of

them might want the quickest route, some the cheapest, others

the prettiest, or the prettiest provided it is not too expensive, or

the fastest provided that they don't have to fly, and so on. Our

example is a simple one designed to show, in principle at least,

how we might go about solving the problem of creating such a

route-finding aid.

54

Returning to the business of setting out what we know about

the problem, what alternative routes are there? What alternative

forms of transport? The form of transport we choose will,

naturally, affect the routes available to us. Assuming, though,

that there are just three possibilities: plane, train and bus (or

combinations of them), we might end up with the following:

GODMINSTER

LITTLE
WITTERING

TRAIN

CAMFORD PLANE

TRAIN

LONDON

ROUTE

NUMBER

FARE

(£)

JOURNEY

TIME (HRS)

1. TRAIN (VIA CAMFORD) 8.00 1.50

2. BUS/TRAIN (VIA CAMFORD) 7.50 2.20

3. TRAIN/BUS (VIA CAMFORD) 6.50 2.30

4. BUS (VIA CAMFORD) 5.00 3.00

5. PLANE 10.40 1.00

6. BUS (VIA LITTLE WITTERING) 6.00 2.50

7. BUS (VIA LITTLE WITTERING) 5.50 2.30

55

These are some possible routes:

1 Train to Camford then train to Godminster.

Bus to Camford then train to Godminster.

3 Train to Camford then bus to Godminster.

4 Bus to Camford then bus to Godminster.

5 Plane from London to Godminster.

6 Bus from London to Little Wittering by the short but boring

motorway route then on by bus to Godminster.

7 Bus via Little Wittering by the slow but pretty route.

The 'best' route depends on what you are looking for. Does it

matter if it is short or long ? Are we most interested in whether

it is cheap or quick ? Is there anything we want to do on the way

- like visit the Norman church at Little Wittering?

Certainly we want to know the cost of the route and the time

it will take. The length of the route may not be so important.

There's no right answer to this problem, either. But there is a

best answer, depending on what we are looking for. Let's look

for two different 'best routes':

1 The quickest route costing £7 or less.

2 The cheapest route which takes less than two and a half hours.

We might add that although these are the most important things,

if two routes come out equally on test, then we'd prefer travelling

by train to travelling by bus and would like to go by plane most

of all.

Filling the gap So far so good; we have the facts, and we know what sort of

answer we're looking for. Now for the next bit: filling the gap

between the problem and the answer.

Remember, we're not going to bring in the computer yet.

We're still at the stage of analysing the problem, finding out

what it consists of. Then we're going to go on to solve the

problem; it's only when it comes to carrying out the solution

that we'll think about whether we want to use a computer or not.

So we'll go back to our two problems, and see what's in that gap.

The fixture list
We've got, on the one hand, the teams and the dates. And, on

the other hand, the features we want our fixture list to have.

56

Complications

Solving the
problem

The logical

and the lateral

What's in between? The difficulty of finding a list which meets

our guidelines as closely as possible. That's the gap; the solution

is the way we're going to discover of finding that list.

Route finding

For this exercise, we have our routes on the one hand and our

guidelines for which route we'd choose on the other. And in the

middle? The job of testing the alternatives, to see which one fits

the bill.

Using the methods above we've analysed our problems. Of

course, these are pretty simple problems, and they haven't been

too difficult to analyse. In real life, we come across some much

more complex problems, not just the kind of problems we put

at the head of our list at the start of the chapter (controlling the

jet engine, and so on); they are pretty simple as problems, though

solving them is not so easy. But what about

predicting the likely sales of a new product

designing a hospital

solving the crime problem?

Difficult as these may be, it does help to go about them in the

same way. The most daunting problem looks more manageable

if you take a systematic look at the facts, the sort of features you

want to find in your answer and at the difficulties which lie in

the way between you and the answer. If you feel you can't grasp

the problem at all, it can be a help to divide it up into different

parts, and to analyse these one by one. We'll talk later in the

chapter about some of the things you will need to look out for

in doing this sort of complicated analysis.

All the analysis in the world, however, won't actually solve the

problem. We must now go on to the next stage: finding a solution.

We're not talking about an answer, remember: just a solution, a

way of reaching the answer.

Perhaps we should draw a distinction, first of all, between two

quite different ways of going about problem solving. First,

there's the logical approach. You know what you're looking for.

You know what alternatives are available and you can solve the

problem by looking at each of the alternatives in turn, seeing

how they measure up to your objectives. You have probably

57

already decided that this is how you'd tackle the route-finding

problem. You'd calculate how much time each route took, how

much each cost, and then you'd check all the routes against each

other to see which one best fits the bill. There are only seven

possible routes we've given ourselves, so that wouldn't take too

long: there's no point in trying anything fancier.

What about that fixture list problem, though? How many

possible ways are there of combining those teams into a fixture

list and how are we going to find one which meets the guidelines

we've drawn up? This time, there are thousands of alternatives.

You would immediately rule out some which obviously don't

obey our rules - those which schedule exactly the same matches

week after week, for instance. But it would take a very long time

to look at each possible list in turn, discard all those which won't

do and list all those which will.

You may ask, isn't that what the computer is supposed to be

good at - sorting through a lot of information, and fishing out

the bits we want? Well yes, it is. But take a look at just how

much information it would have to sort through in this case.

How many ways could the list actually be made up - so that

each week, let's say, each team had one match angl every team

was listed? For each week, that would mean 30,240 possibilities.

Then we'd have to combine the weeks with each other to

make a season of 18, 19 or 20 weeks. Looking at the 18 week

seasons alone (and our solution might not even come among

these), there are millions of alternatives. If we now take account

of the different ways of combining weeks to make up a season,

the possibilities increase still further. Even for the computer to

draw up all those lists and check to see if each in turn was what

we were looking for, it would take a very long time indeed, even

if it were working at the enormous speeds we talked about in the

last chapter.

So you think there's an easier way? Well, just you find it;

have a few tries, and you'll soon discover it's not that easy. In

fact, it is not going to be a totally logical process at all. We'll have

to make a guess at a way which might do, then test it out to see

if it works - and if it doesn't, think again.

In other words, we're back to that 'sixth sense' business

which we sometimes call lateral thinking - not plodding for¬

wards logical step by logical step, but making jumps all over the

place so as to cut corners. It isn't entirely magic, though. We have

clues to help us. In this case, we all probably know some simple

techniques for sorting information which we might use to get

started. We might, for instance, decide to look at the first half

58

of the season first, and try and fit one match between every

combination of teams into the first ten weeks. Then we could

use a 'mirror image' for the second half of the season. What other

techniques would you try ?

In fact, logical and lateral thinking aren't completely

different; they merge into each other, and this kind of example

- where we could deal with a few alternatives logically but need

to find a different way of dealing with a lot - shows us just how

they can fit together. It shows us, too, that the computer doesn't

do away with the need for lateral thinking. Its speed and accuracy

certainly make logical thinking a very powerful tool but there

are still plenty of situations in which logic alone isn't enough.

There are other ways of thinking laterally, too, which come

in handy when we have other kinds of problem to solve. We'll

take a look at some later in the chapter.

We should also mention another way in which the computer

cuts down the need for thinking of both kinds. We might solve

our fixture problem by 'borrowing' a solution - in the form,

perhaps, of a computer program someone else had written to

solve a similar problem. It needn't be a football fixture problem

they had tackled; it might be, say, a tennis club round robin

contest, or even a timetable or a way of sorting scientific results.

Football isn't the important part, when it comes to solving the

problem; that's the context of the problem, rather than the

content. We need a solution with a similar content, even if it

occurs in a different context.

In order to find one, we need to get used to the idea of

separating the content from the context - the sort of problem it

is, from the details which make it unique. In this case, the content

of our problem involves a way of drawing up and testing

alternatives, when there are too many alternatives to work

through them all one by one. We'll come across this same content

in problems and solutions from very different contexts.

Mapping out the logic Before we talk about clues and tricks to help us think laterally,

let's look at the business of solving problems logically. And this

is the point at which we're going to introduce flow charts.

Some people have the idea that flow charts are something

special to do with computing. Not so they don't involve com¬

puter programming at all. They are simply a way of drawing up

a map of our solution: planning out logically, step by step, how

we're going to carry it out.

59

There are a number of conventions people use in drawing

flow charts, but for now we're going to stick to a very simple

version. It has:

a beginning - which we make this shape:

instructions on what to do next, this shape:

junctions - leading to paths which we travel down in different

directions, depending on the signposts on them. We might also

think of these as decision points.

They are this shape:

An end, the same shape as the beginning.

Piano tuning.
Once one note is tuned accurately

to the pitch of a tuning fork, other

notes are then compared by ear.

The tuning pegs, which control the

tension in the strings, are held in

position by friction and a special

key is used to ease them round.

Joining these shapes up are paths, with arrows to show which

direction we should travel along them, and sometimes signposts

- often based on 'yes' and 'no' answers to questions.

We'll make all this clearer by taking a problem, and drawing

a flow chart of its solution. We won't start with one of the two

we've been analysing. Instead, let's take a very simple one:

tuning a piano. How do you go about tuning a piano? Like this:

60

Start

It's quite simple but have a good look to make sure you under¬

stand how it works before reading on. You'll see that though

you start at the start and end at the end, you don't necessarily

go down all the paths in between: only the ones you need. You

may also go down some several times. The 'loops' we've put in

send you backwards, so that you can repeat the operation of

testing and adjusting as many times as are necessary. Loops are

a very important idea in drawing flow charts and in computing

programming. It is very important to make sure there is a way

of escaping from these loops, so that you don't travel endlessly

round in circles. How do we escape here?

Now you've got the idea, how about having a go yourself at

the London to Godminster problem? Start by plotting a way of

finding that first 'best route' - the quickest one costing under

£7. And when you've drawn the flow chart, carry out the

operations in your head to see if it works.

We've drawn our own version on the next page. Your chart

need not be exactly like ours to be right. There are several right

ways of solving this problem - the main thing is to make sure

that yours works. Did you miss anything out? Could you escape

61

62

from any loops you used ? Once you're sure it is right, then you

can think about whether you could have got there more simply

or easily. A similar technique could be used for the alternative

problem - finding the cheapest route which takes under two and

a half hours.

Exhausting the
possibilities

You may feel that the flow chart was pretty complicated, for

such a simple problem, but we haven't put anything into the

flow chart that wasn't in the original problem as we analysed it.

It just shows that when you buckle down to it, there's a lot more

to even the simplest problem than you first imagine. Even if you

were simply looking at the map and making calculations in your

head or on a scrap of paper you will, without realising it, have

gone through those steps yourself. In Chapter 1, we looked at

the way a computer is thoroughly stupid. It can't do anything

for itself; you, the programmer, have to tell it to do every single

thing. In order to tell it accurately, you really do have to be as

exhaustive as this. You can imagine what the flow chart would

look like for a really complicated problem!

This is not the only direction in which you need to be

exhaustive in problem solving, however. You will only get the

right answer if you ask the right questions; before you even

draw up the flow chart, you should make sure you have taken

into account all the possible solutions. We cut the alternative

routes from London to Godminster down to seven, for the sake

of the example, but did you take into account the possibility that

none of them would fit the bill, for instance? In real life, you

don't want to cut down until you have opened up. What, for

instance, if the most attractive way to get to Godminster had

been by canal boat? That's a possibility we didn't even consider!

Now you've seen just how much work goes into solving even

a simple problem, you should be in a much better position to

appreciate how much work will be wasted unless you carefully

analyse every aspect of the problem before you even think

about the solution.

Data and
instructions

You will have noticed that when we drew the flow chart for the

route finder, we didn't put any details about the routes them¬

selves into it. We didn't even say there would be seven of them,

and we could have used the same flow chart if there were 100

or 1,000.

63

To understand why we didn't, we need to introduce a very

important distinction: between instructions and data. What are

they? Well, broadly speaking:

1 Instructions are what we do, or tell the computer to do.

2 Data is what we carry out the instructions upon.

So, in this case, the instruction is the flow chart; and the items

of data are the facts we found out about the routes. Much the

same is true of the piano tuning example: here, the instructions

are in the flow chart again, but the data are the various notes,

right or wrong.

However, it's not quite so simple because what are instruc¬

tions in one instance can be data in another. Let's take a fairly

straightforward example. We've put our price limitation - that

'£7 or less' - into the flow chart. Alternatively, we might have

put it into the 'data' section. Our instructions, instead of saying,

'Is the cost £7 or less?,' might have said, 'Find the maximum the

client is prepared to pay. Is the cost less than that?' You will see

that this could be a very useful refinement if, say, the problem

was being solved by a travel agent with lots of customers who

had different budgets. So we could modify the flow chart to

allow for this new instruction. Notice the new shape which

means 'take in data at this point'. The modification has, of course,

lengthened the flow chart.

Generally, you will find this true of instructions, whether they

are in the form of flow charts, computer programs or whatever.

'Tailor' them to fit the problem precisely and they will be short

and simple. Make them 'off the peg' and you will have to make

them a bit bigger, but that leeway will pay off if you can use the

same solution to deal with lots of different problems. It's rather

like the content and context distinction we made earlier: we are

taking more and more of the 'context' out of the solution and

finding that the universal 'content' which is left can be applied

in more and more instances.

The child's
multiplication
table

We'll take one more problem, and look at the instructions and

data question for that, too: the problem of testing a child's

knowledge of the multiplication tables. We need to stop some¬

where so let us cut it down to the range from 1 x 1 to 12 x 12.

We need to generate questions from that range and we need to

test answers to see if they are right, giving the child another go

if he or she gets it wrong.

64

65

66

We want a method of producing questions and testing answers,

then to ask a particular question - say, what is 6 x 8?, take in

the child's answer and get back a 'right' or 'wrong, try again'

response. After three wrong guesses we want to be able to give

the right answer and then be in a position to ask the next

question.

The solution Can we solve this logically? Yes. There are only a modest number

of possible questions in the multiplication table (144, to be

precise), and it should be possible to find a way of carrying out

a straightforward logical solution. So let's set out the flow chart.

What are the instructions here? Simple - they're on the flow

chart. But what are the items of data? The answers given by the

child are certainly data. But is there any other data? What about

two other pieces of information - the numbers we produce at the

start, and the right answers?

It depends very much, in fact, on how we carry out the

solution. What do we mean by that? Well, let's say we do all

this by hand. We generate random numbers by throwing a dice,

and we check the answers against a written multiplication table.

Would you agree that the numbers on the dice, and the written

table, are not instructions but data?

If we program the solution for a computer, though, we'd get

those numbers, and check the answers, in quite a different way.

Some computers have a program to generate random numbers,

and we might simply instruct the computer to dig out two

'random' numbers. All digital computers can do multiplication so

that when it comes to finding the right answer, we just instruct

the computer to multiply the two numbers together. Now are

those numbers instructions or data?

Not so easy, as you can see. Broadly speaking, when we are

talking about a computer program, we mean by instructions

what is actually written in the program; and by data what are

items of information the computer has to obtain from outside

the program, when carrying it out, or running it. The computer

doesn't obtain anything when finding the right answer, so that's

part of the instructions. Does it obtain anything when producing

the numbers ? If it uses a random number generator which is part

of its programming instructions (we'd just tell the computer,

'generate any number between 1 and 12), that's also part of the

instructions. It would be data, however, if (for instance) we fed

in a list of numbers and asked the computer to run down the list,

asking one question after another. We look at this question

again (and point out an important exception) in Chapter 4.

67

Carrying out Though we've been going through our problem solving step by

the solution step - from the analysis to the solution and now to carrying out

the solution - you'll have realised that it isn't as simple as all that.

We have to keep looking backwards and forwards. For instance:

1 In finding the facts, we have to anticipate what kind of answer

we shall want.

2 In deciding what kind of answer we want, we have to bear in

mind the difficulty of solving the problem.

3 In solving the problem, we have to take into account how we're

going to carry out the solution.

That last flow chart we drew is already half way to carrying out

the solution - because in putting in the sources of data, we had

to decide whether we were going to carry out the solution by

hand or on the computer. In fact, even before listing the instruc¬

tions on the flow chart, we need to know how the solution will

be carried out.

Why? Well, take for instance that 'produce a random

number' instruction. We need to know how it will be done

before we know if it is an adequate instruction. What if we're

going to carry out the solution on a computer that doesn't already

have a random number generator? Then we'd have to be even

more exhaustive in our instructions, either by telling the com¬

puter exactly how to generate random numbers, or by giving it

a list of numbers to work down, as we suggested above.

The patterns of travel down a flow chart are closely related

to the pattern of movement around a computer program. The

computer, like us, will be able to 'loop' back on itself, or 'branch'

down one path or another, depending on a particular result. If it

couldn't we'd have to take that into consideration when we

drew the flow chart and think of another way of mapping the

instructions.

It's true to say, in fact, that deciding what tools we'll use to

carry out the solution is still part of the solution, rather than part

of the carrying-out.

Choosing the
computer

Inevitably, to make our examples simple enough to be readily

understandable in this chapter, we've made some of them so

simple that they could easily be done by hand. Why bother to

use a computer for testing the multiplication table, you may be

asking yourself? I could easily act as the tester myself! However,

68

Route finding:

sorting and

selecting

J

The fixture list:

working out

the difficult

the computer could score over doing it by hand in all the cases

we've mentioned. Look at them in turn, and see what are the

advantages of doing it on the computer.

It is no problem selecting the best route manually when we've

only given ourselves seven routes, and only a few simple con¬

ditions to fulfil. What if we'd investigated fully (as we'd certainly

do in real life) and found a selection of routes - road, rail and air

- interlocking and combining in various ways, to produce

dozens of alternatives? What if we knew a dozen facts about

each which might influence our choice? It would soon become

extremely difficult to work through and find out which route

suited us best. What if we requested a route with features that

no route had? Maybe we'd ask for a route that took under two

hours and cost less than £6. We'd check every one on the list,

find that none fitted the bill, then decide that we'd like to know

how quickly we could get there for £6? or how much it would

cost if we only had two hours to spare ? Change your mind dozens

of times, and the computer will still be there, replying politely

and never missing a vital stage through sheer exasperation.

Working at high speed, on lots of alternatives, the computer

proves to be an expert at sorting information to find the

particular example or examples which meet various criteria - not

only routes, but names and addresses (select out, say, all the

members of a particular committee from the address list of a club

or association), hotels, restaurants, holidays (We want to go to

Ibiza - but then we wouldn't mind Crete. What's really important

is that we can't afford more than £200, and we must have a

double room; we want to be able to skindive; do you think we

could do that more cheaply in Corsica?; we'd skip the double

room if it saved us £10, of course), etc. If the information is there,

then the computer can sift through it quickly, without losing its

temper - always assuming it's been programmed correctly.

If you tried to draw a flow chart for this, and you are not an

expert mathematician or logician, it probably drove you round

the bend. Try to draw up the fixture list itself, and you'll settle

after the first five hours for a half decent version. Never mind

the alternate homes and aways - at least all the matches fitted

in somewhere.

Can you do it on a computer? Yes, of course. It's not a

program you will be writing for yourself next week, but people

have written programs to deal with this sort of problem, and all

you have to do is buy a suitable one or have one modified.

69

The multiplication table:

patient teaching

Piano tuning:

sensing the

unlikely

An artist's impression of a possible

electronic hand-held piano tuner.

It contains a microphone, to listen to

the note; a keyboard, to choose the

note being tested and the octave; a

special motor, geared down

enormously to provide the right

amount of 'twist' to turn the pegs,

and a trigger to set it going.

Sure, you could sit for hours and fire questions at a child. But

you have to be there to fire them. You have to keep concentrating

and woe betide you if you give the wrong answer.

The computer never gets tired, and is always available,

always accurate. It's polite even when the answers get really

silly. And it's fun to use ... for a while. Of course, a simple

program like the one we've just described does no more than

test. It cannot teach and it cannot fathom out why you get the

wrong answer or help you get the right one. But a much more

sophisticated program could do a good deal of this.

To think of the computer as a tool for piano tuning needs a fair

bit of imagination, of lateral thinking. We get so readily trapped

in the predictable pattern of solving familiar problems in a

particular way that it takes a real effort to make ourselves see

them differently. However, when you think about it, the com¬

puter could make an ideal piano tuner.

If we strip away the context of piano tuning and look at the

content, the problem ceases to be about music at all. It has to do

with testing and adjusting and, from Chapter 1, you will re¬

member that sensors can act as input and actuators as output to

enable the computer to test something and alter it if necessary.

70

Right: Bill Davies designing a

working electronic mock-up.

Note the small 'stepper' motor,

fitted with a pointer.
Left: Testing the equipment.
Although the motor does not have

enough power to turn the pegs, it

does respond correctly to the

computer's signals and can tell the

operator - by its movement (or lack
of movement) - when the note

is in tune.

The electronic piano tuner
A teacher from Bury St Edmunds wrote to the BBC after watching

a programme about microelectronics to say that he and his wife

find it difficult to find piano tuners in their area and he suggested

the idea of an electronic piano tuner which would be rather

like an electric hand drill in size. This would fit over the square

ended tuning pegs on the piano. A microphone would pick up

the sound as the string is struck and the computer would com¬

pare the frequency of the note it hears with a frequency stored

in its memory. If the note were too low it would instruct the

motor to tighten the string; if too high it would relax it by

turning the tuning peg the other way.

In a recent programme in the television series Managing the
Micro, Bill Davies, of Brighton Technical College, produced a

mock-up of such a system and showed that it could work - at

least in principle.

Clearly, a practical piano tuner would need to be mechanic¬

ally very strong and extremely sensitive. It would also need to

hold many notes in its memory and would need a keyboard of

its own into which the user would enter the name of the note he

wanted to tune.

71

The X factor:
hitting the
right solution

The

professional

touch

Stripping

out the

context

Professional piano tuners say that tuning pianos is a very subtle

business and doubt if a device of this kind would be good

enough. However, it is amusing to speculate that one day it

might become sophisticated enough to beat the human being!

The unlikeliness of the piano tuning example underlines the

importance of 'lateral thinking' - looking at the unobvious.

Clearly it is important not only in selecting the method by which

we will solve a problem, but also in choosing our tools.

Let's take a brief look at some of the ways in which our

thinking is restricted, and at some tricks for lifting those re¬

strictions and showing us new possibilities.

All of us have various thinking and operating techniques which

we use in our jobs - a mixture of viewpoint and practice. Imagine

asking a mathematician, an engineer and a housewife to design

the perfect house. How would their solutions differ?

You'll probably agree that each would over-emphasise some

features of the design, and under-emphasise others. The house¬

wife would know a great deal about how to make a house

pleasant to live in, but she might not take into consideration the

location of the plumbing pipes. The mathematician might care

about the proportions of the rooms, but fail to notice that the

kitchen and dining room were at opposite ends of the building.

The engineer might design a house that functioned perfectly

from a technical point of view, with all its systems well thought

out, but that just didn't look right.

Of course we need to make full use of the experience we

already have in problem solving. At the same time, we need to

be wary of giving too much emphasis to the familiar aspects and

ignoring other important considerations. If, say, you asked a

musician to find a new way of tuning a piano, do you think he

would think of using a computer?

We've already mentioned the difference between the content

and context, and how the context of a problem can blind us to

its content. When solving that fixture list problem, for instance,

it is no help to think about other aspects of running a football

team. Instead, we need to compare it with other problems that

involve arranging data in a particular way.

One useful way to set about this is to rephrase the problem,

or even a single word in it. Suppose, say, your problem is

72

Unlikely

associations

deciding where to put a bath. Why not get rid of the word 'bath'

altogether, and substitute the word 'container'? It doesn't mean

quite the same, but a bath is, among other things, a container.

Using the alternative word could set you thinking along less

obvious paths. Do you want to put anything besides water in

the bath (coal? the laundry? the kids' rubber ducks? plants?)?

Where does the water come from to fill the bath? Or you might

try the word 'wash' - and consider whether you really need a

bath? How about a shower? A sit-up bath? How does the bath

fit in with other washing arrangements? And so on.

Another trick that takes us a little further along the same route

is to consider a comparatively (at first thought) unconnected

word, and see if you can work from there to your problem.

Examples? Let's take the problem of supermarket stock levels,

and the word 'day'. Not an obvious connection but it might

make us think along the lines of, say, how often do we want to

add up sales and recalculate stock requirements? Is a day a good

interval? Should we do it more than daily? Could we do it

continuously by electronic means? And all of a sudden, the chore

of doing a weekly stocktake appears in a quite different light.

It is very easy to get stuck in a rut when you're approaching

a problem. You see it one way, and even if the way you see

doesn't seem to be leading anywhere, it's difficult to change your

perspective. Associative techniques are intended to break the

vicious circle. It's like, say, going to work. You might take the

same route day after day, without ever giving it a thought. Then

one day you have to visit the dentist first and you stop to think

how to get from the dentist's surgery to your work. Suddenly,

it strikes you that for years you have been taking a long way

round. The alternative was right in front of your eyes, but you

just couldn't make yourself see it.

What about One good word to use in this associative way is staring us right

that computer? in the face - it's that word computer. If you don't have a com¬

puter at the moment, you may still be finding it hard to think

what exactly you would use it for. You're not a football league

secretary, your kids are past the multiplication table stage, and

you don't play the piano. You can't say that there have been that

many occasions when you've said to yourself, 'I could just do

with a computer to help me solve that problem.'

You will probably recall, if you stop to think, several

occasions on which you have bought a new tool - a deep freeze,

perhaps? an electric drill? - which you didn't expect to use all

73

that frequently. Yet once you had it, you found yourself using

it again and again. It's as if the more you used it, the more you

found you needed it, until soon you couldn't imagine how you

ever did without it.

It's hardly surprising - you were using the same type of

association. The new gadget was probably at the top of your

mind, and when you came across a problem in your daily life

(what shall I cook for supper ? where shall I hang that picture ?)

your mind worked from the gadget to the problem, perhaps

without you ever noticing.

In the future, designers, engineers, managers and house¬

holders will look to the computer as a versatile tool to use in the

solution of a whole range of problems. We are only at the early

stages of the computer revolution and, although things are

changing rapidly, the use of small computers is still limited by

the lack of good programs (software) as well as a lack of the right

kind of sensors and activators (hardware) needed to carry out

the tasks they could be asked to do.

Lastly, to reinforce some of the points we've made about

problem solving in this chapter, here is our final challenge -

controlling a greenhouse.

The greenhouse What is the greenhouse problem? Well, we certainly know some

problem basic facts: we know what plants are being grown and what

conditions they like, how much heat or cold they can stand,

how much food they need and so on. The answer: a way of

controlling these various factors, when we're not around to do

it ourselves. And the gap: finding that way.

Here we have to do our hard thinking in order to fill in that

gap. How might we start? Well, remembering what we've said

about content and context, you will doubtless realise that the

problem of running the greenhouse isn't just about plants. What

is it about, then? The things that make plants grow well - the

temperature, humidity, light and so on, the relationship between

all of these factors and the control of them.

That word 'control' is the one which might lead us to think

that the computer could help us as we have seen that controlling

things is one job the computer can do very well. Could it do the

job in this case?

Basically, the answer is yes. The computer can't easily

decide what temperature would be best, or how much food the

plants need - though it could keep a handy note of these details

for us, once we'd worked them out. If we told the computer what

temperature and plant food we wanted, though, it could certainly

74

How the parts of a computer-controlled greenhouse at the National Institute oj
Agricultural Engineering, Silsoe, Bedfordshire, link together.

Compare them with the diagram on page 36. Plants here are grown in

hydroponic (soil-free) conditions using a liquid feed. The computer controls
its composition.

75

a

go about keeping them within the range we selected.

What kind of input and output would be involved to enable

it to do this? Sensors and actuators would be used like the ones

which control that jet engine (page 10). The sensors would

measure the temperature and examine soil conditions and then

they would input the measurements to the processor (we look

in more detail at how this is done on page 91). The processor

would compare the measurements with the temperature, soil

acidity and other limits it had been given, and if they didn't fit/

tell the actuators to set in action the apparatus that might put the

situation right - heaters, ventilators, pump, or whatever.

Just to give one example where the computer would be

better at controlling, say, the temperature in the greenhouse than

more traditional thermostats, consider the problem of switching

the heat on around daybreak. Photosynthesis in the plants can

begin as soon as the sun rises and, to get the maximum photo¬

synthesis, the temperature needs to be raised to anticipate sun¬

rise. During darkness the temperature needs only to be high

enough to prevent freezing. The ideal controller, therefore, will

know when daybreak is going to be, for every day of the year.

^ and will switch the heat on about half an hour beforehand. This

is a very trivial problem for a computer programmer to solve and

^ it is only one of a number of things which a greenhouse control

p program could be asked to do to help reduce energy wastage and

produce maximum yield in crops. Of course, in hot weather,

keeping temperatures down is equally important, so here a

ventilator control motor could be used, and linked into the rest

of the system.

At this stage we would doubtless have to go back and get some

more information - things like what sensors are available? what

would the system cost? and at least, could we actually buy or

write a program to make the computer do all this? We haven t

got rid of the problem until we have our solution up and running ■
In Chapter 4, we will take a look at programming one or two

of the problems we've looked at in this chapter, and let you see

for yourself that programming is really not such a mystery-

Firstly though, we need to take a closer look at just how that

computer works.

76

The hardware
and the
software
So far we have seen roughly what the computer is like, what sort

of things it does and how it fits into the business of problem

solving. Now it is time to take a look at how the computer is

actually put to work. We need to take the human being with his

problem, the computer with its processor, memory and so on

and look at the way in which we close the gap between the two.

We've called the computer a tool for the problem solver, but

we need to go a little further and look at how this very special

tool differs from other tools - hammers, drills, sewing machines

or the like.

The adaptable
machine

With traditional technology, a machine was designed specifically

with a task in mind. Take a simple machine consisting of a couple

of cog wheels. The design of the cogs determines precisely what

the machine will do - in this case change the direction of rotation

and speed of a shaft. What goes on is completely predictable and

is determined by the ironmongery - or the hardware, if you like.

If we want to alter the machine in any way - say, to change the

ratio determining the change in speed between the cogs - we

have to change the hardware. This means physically redesigning

the system.

77

'Programmable' machines.

However versatile the computer, it

would be quite wrong to think that

it was the first ever programmable

machine. Jacquard's loom, 1862,

(top left, p 79) could weave

different patterns in cloth

according to programs stored on

sets of punched cards (shown at

the top of the machine). Inspired

by the loom, piano makers

developed similar devices (like

the one shown extreme right,

from the Musical Museum,

Brentford). The paper roll, (inset),

has the music punched into it.

Air, sucked selectively through

the holes as they pass over a

perforated metal plate, operates the

playing mechanism. Composers like

Rachmaninov 'recorded' on pianos

like this one.

Below, a computer-controlled robot

builds up the opening title sequence

for a recent television series.

When we use computer technology, an entirely new concept

is required. What happens in a computerised system is not

immediately obvious because what happens is determined not

so much by the hardware but by the program of instructions fed

in to the computer 'black box' from the outside. To alter what

the machine does we simply alter the program - or the software

as it is called. It is not necessary to alter the hardware physically

at all. Changing the software instructions enables the computer

to do different things.

So the flexibility we gain through our ability to control the

hardware by using a series of instructions is the key to computer

technology. This has meant that a new breed of person has

evolved to cope with these new concepts. We hear of people

called 'software engineers', 'programmers' and 'systems an¬

alysts'. Most of these people work not with screwdrivers,

soldering irons and other hardware tools, but with paper and

pencil and the keyboard, creating instructions for the computer.

78

79

We saw in Chapter 1 that the computer's versatility is based

on only a few fundamental things - adding two numbers to¬

gether, subtracting them to see if one is bigger, smaller or the

same as the other. On its own, of course, the computer can do

nothing; we have to tell it to do tasks which involve computing

and we have to use a language which it can understand. This

means programming it, and usually involves using a keyboard.

It is possible to program some computers in what is known as a

'high-level' language - that is, in a language which in some way

resembles the language we use ourselves. At other times, it is

necessary to use a 'low-level' language - for example, when the

instructions are entered in the simpler but much more incom¬

prehensible 'machine code' of Os and Is discussed on page 96. In

this chapter we take a look at some of the things going on inside

the black box when the computer operates.

Playing the game. A 'dedicated'

microcomputer and its dedicated

clientele. The machine has been

programmed to perform only the

one (admittedly complex) task.

At this point it is quite important to make a distinction between,

on the one hand, 'all-purpose' computers which we, the users,

can program ourselves and, on the other, machines which

may well contain microcomputers which have been pro-

80

grammed by their manufacturer to do quite specific things. The

latter are 'dedicated' microcomputers. The television-based

games found in pubs are of this kind - and so are the newest

washing machine controllers: with the games you might play

Space Invaders or nothing; with the washing machines you may

be offered a wide choice of programs - for whites, coloureds,

delicate fabrics and so on. You can select the most suitable one,

but if you don't like the choice you are offered, that's too bad.

You can't tell the machine to wash clothes according to a program

you devise - you have to stay within the manufacturer's selec¬

tion. If the whites' cycle is at 70°C and has three rinses then

that's that. It's just too bad if you want to wash at 65°C and

with four rinses.

The kind of computer we are interested in here is the kind

which can be programmed by the user with a series of instructions

ted into its memory in a form which it can understand.

Programs
and software

A program is a series of instructions. The vital word here,

though, is not 'instructions', but 'series'. The point about the

programming concept is that it is not necessary to give the

computer one instruction, wait until it has carried it out, and

then give it another instruction - instead, we give it the whole

series of instructions at once. That is what the automatic washing

machine's program does, too. It tells it how and when to stop

one operation and go on to the next, so it can move through the

various washes and rinses in a cycle without stopping for more

input from the user.

The computer's program has one great feature - which some

people have called the 'intelligence factor'. It is the opportunity

to give the computer alternatives to carry out, depending on

what it finds out as the result of carrying out previous instruc¬

tions. Take, for example, the procedure of deciding if an

umbrella is needed before we go for a walk. We might program

a robot to decide if it needs an umbrella, by giving it five

instructions:

1 Open door.

2 Look at the sky.

3 Is it cloudy or raining?

4 If yes, pick up umbrella.

5 Go out.

81

The software

We saw alternatives like these in the flow charts we wrote in

the last chapter, and we will see more of how the computer

handles them in Chapter 4. This ability to make decisions, and

as a result of them to take different paths through the program,

is the one thing that makes the computer unique.

We have already said that the program is part of the computer's

software, as opposed to its hardware. The sort of program we

talked about above - and the sort we wrote flow charts for in

Chapter 2 - is called an 'applications program'. It is a program

fed in from outside which tells the computer how to carry out

an application. However, the computer has to know how to

understand the program.

If the program is written in the computer's binary code, and

tells it exactly what to do at each stage, that's no problem for

the computer. But for many applications it is preferable to write

the program in a 'high-level' language, one which is easier for us

to understand than the binary code instructions. To do this we

use a program already in the computer to translate these instruc¬

tions into the binary codes which it understands. The 'inter¬

preter' - and this is analogous to a language interpreter - is also

software.

82

Nearly all computers are made with some of these decoding

instructions built into them. In fact, they aren't something you,

the user, give the computer, nor do you need to understand them

to use it - they are something the manufacturer has made a part

of the machine. When the instructions come in this form, they

are sometimes referred to as 'firmware'. The firmware then,

usually contains everything the computer needs to know before

it can run the 'applications programs' fed in from outside.

We'll return to look in more detail at some types of software

later in the chapter. First, we need to take a longer look at just

how the computer's hardware gets to work.

Inside the

computer

A simple way of explaining how the computer works is to use

a simple analogy - that of a railway system dealing with coal

trucks. As all analogies have their limitations, do treat this one

in the spirit in which it is offered!

Imagine that there is a main line along which trains arrive,

and a main line down which they eventually depart (this is like

INPUT and OUTPUT in the computer). Each train which arrives

has on its front a number (an ADDRESS) which says which siding

(MEMORY LOCATION) it is to go to, and has eight trucks, some

containing coal, others empty (the DATA). As it arrives, each

train passes a controller who operates the points to direct the

train into the siding which has the same number as the number

on the front of the engine. Let us imagine that two trains arrive

- one is directed to siding number 20 and contains five tons of

coal and the other is directed to siding number 21 and contains

seven tons. The controller also receives instructions (a PRO¬

GRAM), say down the telephone line, and he writes these in¬

structions on a blackboard in his hut. Both the sidings and the

blackboard contain all the information he needs. His job is to sit

there all day, directing the trains in and out of the sidings and

into the yard where new train loads of coal are made up according

to instructions he has received. Imagine his instructions read:

1 Take the contents of the train in siding number 20

and move it into the yard.

2 Take the contents of the train in siding number 21

and add it to the contents of the first train.

3 Store the result in siding number 22, until the main line is clear.

4 Send it on its way.

83

One way of showing how the computer deals with numbers

(see the explanation on p. 83).

Bottom right is the schematic diagram showing the similar relationship

between the various electronic components of the computer. Note that the

'program' and the 'rules' are both examples of 'software', and so is the data

(the coal in the trucks). The rest is hardware.

84

85

The controller operates the points and knows that only one train

can move at once and that there is only room for one train in the

yard at once. He has his own local rules about this. He directs

the first train into the yard (the ACCUMULATOR) and it dumps

its five tons of coal there, and moves back to its siding, empty.

The second train is then directed to the yard and dumps its

seven tons, again returning empty. The yard now temporarily

has accumulated twelve tons. An empty train arrives, fills up

with the twelve tons and goes off to wait in siding number 22

until such time as the controller sends for it - to send it on to

the main line (the OUTPUT). The controller is responsible

for the directing of the trains, altering the points, receiving

and looking at the instructions and for what goes on in the

yard. His empire includes an area of the processor called

the ARITHMETIC and LOGIC UNIT (ALU) and he is controlled

by a clock and has his own local timetabling rules. Of course, as

we have seen, the computer can add, subtract or compare two

numbers, so in our imaginary railway the controller might get

instructions which say 'If the contents of the train in siding 20

are the same as that of the train in siding 21, then send the train

from siding 21 to Bournemouth. If not, send it back to siding 21/

A curious exercise for a railway, but necessary to complete

our analogy.

Now, bearing our analogy of the railway in mind, a recap of

how the computer works should be a little clearer. Most micro¬

computers handle numbers that are 8 bits long, and each

memory location has a 16-bit number giving its address. Packets

of data coming from the input in the form of 8-bit numbers are

directed by the central processor to a memory location defined

by an address. Each number is now taken out of the data memory

in order and, according to the instruction given by the controller,

is added, subtracted or compared to the result of previous

manipulation. A special memory location has to be supplied to

hold the previous result - this is usually within the control area,

and is called the accumulator (where the results accumulate after

each instruction has been completed). To make sure that the data

reaches the processing area in the correct order, and at the

correct time, some form of clock and local monitoring program

is needed.

Hence information from the input goes to the memory loca¬

tion given by the address associated with it. When the program

- the list of instructions - is working, data is moved from the

memory, according to those instructions, and manipulated in the

arithmetic logic unit, or ALU. Once the instruction has been

carried out, it is put back into a memory location, or moved to

the output.

In our example above, the instructions - in computerspeak -

would be something like this:

1 Load the ACCUMULATOR with the contents of

memory location 20

2 Add the contents of memory location 21

3 Store the result in memory location 22

In the accumulator the value of memory location 20 turns out

to be 3, that in location 21 is 7 and the result is 12. So we have a

very simple program for adding two numbers together.

The different
kinds
of memory

An 'EPROM' - A special kind of

read-only-memory chip which can

be programmed by the user. The

program will stay there quite safely

until the user wants to re-program

it by first erasing it with a burst of

ultra-violet light. Hence its name

-- Erasable Programmable Read-
Only-Memory.

Read-only memory
In most computers it is useful to have some of the instructions

or, in the case of dedicated computers like that in the washing

machine, whole programs permanently stored inside the com¬

puter. There are particular kinds of chips which enable us to do

this so that the memory is not lost even when the machine is

switched off. These are called 'ROM' chips. ROM stands for

'read-only memory'. ROM is rather like a book of instructions -

the controller can look things up in it but the contents do not

change. As we mentioned above, the decoder which helps the

computer to read a program is usually put into the computer by

the manufacturer. We called this 'firmware'. ROM is firmware.

The word 'non-volatile' is often used to describe this kind of

memory - meaning that it is not destroyed when the power is

switched off.

Random-access memory
The other kind of memory found inside computers is called

RAM - 'random-access memory'. Another name for it is 'read/

write memory'. RAM chips are the kind which lose their contents

when the power is lost - so this kind of memory is sometimes also

described as 'volatile'. If read-only memory is like a book of

instructions, random-access or read/write memory is rather like

a blackboard on which you can scribble down notes, read them

and rub them out when you've finished with them. In the com¬

puter, RAM is the working memory. If the dedicated computer's

program is held permanently in ROM, then on the other hand

87

in the programmable computer the program is loaded (written)

into RAM from outside.

Back-up memory
The last kind of memory which concerns us is 'back-up' memory.

This is memory outside the main body of the computer in which

programs can be kept for future use or in which data can be kept

until the computer is ready to use it. It could be a cassette tape

or a magnetic disc or drum and is needed for two reasons:

1 The computer's working memory is only of a finite size and may

not be able to hold all the data it needs to use.

2 The back-up memory is 'non volatile' - it does not disappear

when the power is switched off; only if it is intentionally erased

by the user.

Three sorts of 'back-up' memory:

the 'floppy-disc' - removed from

its protective container, the

punched paper card (now almost

extinct) and the tape cassette for

home use.

What about the expression 'random access'? The best way to

understand this is to think of the difference between the domestic

tape recorder and a gramophone record. On the tape recorder,

if we want to find a piece of music in the middle of the tape we

need to run through the tape to get to that part before we can

play it. With a gramophone record we can lower the stylus down

wherever we want and find that 'band' right away. The gramo¬

phone gives us 'random access'; the casette recorder does not.

Is back-up memory 'random' access? Some is, some is not!

If a domestic tape recorder is used to store data, then a given

piece of data can only be found by running through the tape to

88

How the 'readI write' head can

move across the floppy disc to give

'random access' to its stored

information.

that point. The magnetic disc, though, does give us virtually

random access. The recording or playback head can go to any

part of the disc very quickly and write or read information stored

at that point straight away.
To summarise this, all the instructions that orchestrate the

activities of the computer - like taking instructions from the

keyboard, sending characters to the screen, accepting programs

from casette or disc — must be kept in ROM. This type of ROM

is usually called the monitor, as it monitors what's going on in

the system. In most small computers the details on how to under¬

stand the program instructions are also kept in ROM. In some

circumstances, applications programs will also be in ROM. All

the instructions and data that the computer uses (or creates) in

the course of running a program will be kept in RAM.

Moving between
the memory
and the processor

Getting information into and out of the memory is quite a com¬

plicated task. You will remember from page 37 that most

common microcomputers can potentially store up to 63,336

bytes (each containing 8 bits) of information and each byte lives

in a separate memory location, with its own address.

Using another analogy, consider the information to be stored

as similar to the contents of a letter. The letter contains informa¬

tion and has to be sent from one address to another. The letter

is put into an envelope and posted to the location given by the

address on the envelope. When it reaches the desired location,

the letter is taken from the envelope and kept at the new address

until something else needs to be done with it. This is exactly how

the computer handles information. Thus, whenever information

has to be transferred from one memory location to another, this

is done by knowing the source and destination addresses.

The bits
and pieces

If you open up a computer and look inside you will see it consists

of a number of silicon chips fixed into a complex web of wires

on a printed circuit board. One of the bigger chips is the central

processor and other chips form the memory - some of them are

the read-only memory chips and others the random-access

memory chips. Then there are other chips which connect with

the input and output devices which form part of the computer's

complete system.

89

Inside the BBC Microcomputer

1 The Central Processor

2 The clock

3 The random access
(working) memory

4 The read only memory

(containing BASIC) etc.

Many other chips are needed to

perform a range of functions - such

as controlling the screen, and

communicating with the various

other 'peripherals'.

The central processor The microprocessor is the most important component, with quite

an assortment of functions. These include:

1 Controlling all the different parts of the computer.

2 Keeping the operations in time sequence.

3 Performing arithmetic and logic operations - the job of the ALU,

with the help of the accumulator.

4 Transmitting data and instructions to and from the input and

output and the random-access memory.

The 'Bus' In any computer, the controller, the clock, the ALU and accumu¬

lator, the ROM, the RAM and sufficient other circuits to enable

all these to communicate with each other and with the outside

world, are connected by a thing called a 'bus'. A bus is simply

the name given to a number of wires forming a communication

path between different parts of the computer. The bus structure

starts inside the microprocessor connecting its various parts and

is continued on the outside where it is expanded to do a lot of

other jobs. The bus in the computer is usually divided into four

sections as follows:

1 The power supply to all sections of the computer.

2 The control bus which carries all the control signals.

3 A two-way data bus which sends data and instructions to and

from the processor and memory.

4 An address bus which sends the address of the data which is on

the data bus.

90

Unlike a real letter, the address of the information moving around

the computer is sent separately from the data or instructions

travelling from or to that address. Separate busses are used so

as not to get mixed up. It might mix us up, but the computer

really does find it easier this way. The busses are usually con¬

structed as a series of parallel conductors. They are clearly

visible on the photograph above.

Communicating
with the
computer

So much for how the various bits of the computer communicate

with each other. We'll now go on to look at how the computer

communicates with the outside world, through its forms of

input and output.

We have seen that processing information is at the heart of

any computer system. It must be stressed that information will

only be processed in accordance with the program put into the

computer. The computer is unable to think for itself. Information

presented in an unexpected way will not be dealt with properly

and if the machine is asked to process information in a way that

it has not been programmed for, it will blindly try to continue

until it comes to a grinding halt. Information comes in many

forms, and both the input and the output units must be able to

'translate' information into or from the form that the computer

can handle.

Dealing with
the real world

Unfortunately, not all of the information we would like to put

into a computer system is easily available in the form that the

computer can handle. Many computer-based systems are used

for controlling things. Robots used on production lines to make

cars are one of the more sophisticated uses. Modern cars are

using microprocessor-based systems in one form or another.

Cash registers, central-heating controllers, television games,

watches, microwave ovens, cookers and many other consumer

products now have microprocessors or small computers inside.

The information used in these appliances comes in all forms

from continuously varying quantities like temperature, to simple

on-off information from a light switch. The latter is obviously

easy to handle - it's already in a form which the computer can

deal with using the Is and Os of its binary arithmetic 'On' = 1,

'Off' = 0. There is no problem when the computer has to handle

decimal numbers: we saw on page 34 how it translates them

91

into its binary numbering system. The problem comes when

continuously varying information - called analogue data -

has to be converted into separate numbers, or digital data. (Both

decimal numbers and binary numbers are forms of digital data.)

Most computers can only work with digital data - and it must

find a way of treating this analogue information as if it were

digital. Conversely, the information coming out of the computer

is digital, and this has to be converted into analogue form if a

continuously varying output is required.

Typical examples of devices which provide analogue in¬

formation are thermometers, pressure gauges and electrical

meters using needles. As we move into a computerised world,

some of the traditionally analogue means of measuring informa¬

tion are already being converted into a digital form. Take a

digital watch, for example. A watch with second, minute and

hour hands is an analogue device. It doesn't give you the time

in numbers but as a continuously changing pattern in space. By

contrast, a digital watch tells us the time directly in numbers.

Analogue and digital.

In the analogue devices (the watch

with hands and the wall

thermometer), time and

temperature change continuously.

In the digital versions, at any

instant they are given a number

which can change by a minimum

discrete amount (say by one

second in the case of the digital

watch or one tenth of a degree in

that of the thermometer).

In our daily life, we don't see these two ways of presenting

information as being that much different. But to a computer the

difference is vital, and it must find some way of converting the

analogue to the digital.

92

The two graphs illustrate

the ideas further.

Top - To the naked eye the

analogue thermometer produces a
continuously increasing

temperature, represented by a
smooth curve.

Below: The electrical

thermometer's analogue output

voltage is read every minute and

converted into a number (digitised)

in the converter. The computer

receives a stream of l's and 0's

corresponding to the number. To

the computer, the temperature

appears to jump up every minute

and stay constant in between.

[Temperatures could, of course, be
sampled more frequently]

m
w

Analogue to digital conversion involves measuring the value

of the analogue quantity - e.g. temperature - at regular intervals

- and converting the measurement into a number of pulses

corresponding to that measurement. For example, assume that

the temperature of an oven increases by 10°C every minute, as

in the graphs below. If the temperature was measured every

minute a series of numbers would be produced - 10, 20, 30, 40,

50, 60 - each one corresponding to the temperature at that time.

This, basically, is how the computer handles analogue data. A

converter measures the variations (e.g. of the voltage from an

electronic thermometer) at regular intervals, say once a minute

or a thousand times a second, and presents the measured data

to the computer. If the computer knows the time, between each

measurement, it can build up a digital version of what's going on.

Temperature (degrees C)

200-

1 2

Temperature (degrees C)

3 4 5 6
Time (minutes)

80

60

v y
40

20-

0-

A

rH
/ kS

L.,

—* *■ —s ■ 1
V

r -~f—

(
jL

1

1 1

4 5 6
Time (minutes)

10

93

These are very simplified examples of what really happens.

But they do illustrate the fact - a very important fact - that the

computer can not only handle information presented in the

'accepted' way, but also any form of information as long as there

is a way of converting it into digital form. This means that even

complicated forms of information - sound waves, for example -

can be analysed by a computer. Similarly the output from the

computer can be in practically any form required.

Another example
of conversion

To explore this business of converting information into and out

of the computer's binary digital form further, look at the way the

computer uses an ordinary cassette tape (the kind you buy with

music recorded on it) to store its binary digital information.

Basically, the information stored in the computer's internal

memory is read out fairly slowly and put onto the tape. This

cannot be done directly as tapes respond to sounds within the

Digital to analogue conversion when

a program is stored on a magnetic

cassette tape. The 'OY and TV are

recorded as analogue tones of

different frequencies.

frequency spectrum that we can hear - that's what cassette

recorders have been designed to do. The data has first to be modi¬

fied, and one of the easiest ways is to represent a 0 by one fre¬

quency tone and a 1 by another. When the cassette is played back

through the computer interface, the reverse process happens.

This business of analogue and digital conversion may seem

complicated but for the computer it is a great deal easier to g,o

through this process and obtain objective information from

something like a thermometer than it is to go through the in¬

finitely more difficult process of understanding human beings

and their language! Much of the rest of this book is about just

that: the way the computer succeeds (and, in some directions,

still fails) in understanding its human masters and what they

94

want from it. In this chapter, we'll tackle this problem by looking

at the half-way house of computer languages. In Chapter 6, we

will look at the business of voice input and output. But for a

start a comparatively easy operation for the computer: printing

a single character in the form we like to see it.

The computer
makes a letter 'D'

The dot matrix printer at work.

The pins strike the ink ribbon and

thus make an impression on the

paper. Then the print head moves

on a fraction and the process is

repeated.

Of course, there is a very simple way of making a letter 'D'. You

make a pre-formed letter, like the 'D' in a typewriter, and you

tell the computer's printer to produce an impression of it through

a form of impact printing. That works fine, except you need a

separate piece of metal or plastic for each letter and character

you want to put on paper. After a while a practical machine

starts to run out of characters. It will generally manage to provide

all the characters on a standard keyboard in one typeface, but

what if you want to produce Arabic or Chinese characters, or do

graphic illustration?

One kind of printer popular with microcomputer owners

works in a different but more versatile way. It consists of

a row of pins - or in some cases just one pin - which strike the

paper to produce dots. A processor in the printer sends a stream

of Is and Os, and each makes the printer print a dot or miss one

out. Printers like this print seven dots - or, in the better machines

nine - close together in a vertical row. They will then move the

print head along a dot's width and print another selection or all

of the seven dots. By doing this several times they build up a

letter; by doing it a whole lot of times they can print a line

of text.

95

On receiving a completely different pattern of Is and Os, the

same print head can print all kinds of fancy characters - includ¬

ing Arabic and Chinese.

Programming
languages

Machine language

Just as there are many human languages, so there are many

computer languages. These have developed in a similar way to

human language. For example, the earliest men probably had a

limited vocabulary and were therefore able to communicate

limited concepts. As man developed so did his language; as he

became more sophisticated so more abstract concepts could be

discussed. Similarly, when children are learning to talk they use

a few words to describe everything - as they learn more, and

their needs become more complicated, so their language becomes

more sophisticated.

The same thing has happened to computer languages. In the

early days, people programmed using the computer's binary

code, or what we call 'machine language . When this became

difficult, mnemonics were used to make life easier. This is called

'assembly-language' programming. Finally, there are the 'high-
level' languages like BASIC, FORTRAN and ALGOL. These are

much more similar to everyday language, and are translated

directly or indirectly into the computer's machine code using the

computer's firmware. BASIC is the language most often used to

introduce programming, which we will look at in some detail in

Chapter 4. Few microcomputer owners will be interested in

actually programming in the low-level languages, but for the

sake of completeness, here is an idea of what it involves.

This is the language which the computer actually understands

deep down inside itself. When we use a higher-level language

the computer itself translates our instructions into machine

language. Some computers can be programmed directly in

machine code. It is tedious and time consuming as you can see

from the following simple program of Is and Os:

10100101 00100000

01100101 00100001

10000101 00100010

This is the series of instructions which make the computer

actually add two numbers together, and is written in the machine

code of a popular microprocessor. It is clear that more compli-

96

Hexadecimals

A hexadecimal keyboard on a

computer which can only be

programmed in machine code.

Pushing 'E' produces the code 1110,

the equivalent of the number 14.

cated tasks would be very difficult to program. One way of

simplifying it is to replace each group of four binary digits with

a rather more compact code called 'hexadecimal.

The word hexadecimal refers to a counting system based not on

10s or even 2s but 16s. There are 16 numbers that can be defined

by four Is and Os - starting with 0000 and finishing at 1111. The

table below gives them all, together with the decimal equivalent

and the hexadecimal code.

Decimal Binary Hexadecimal
0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 mi F

You'll notice that we ran out of digits for the hexadecimal

column. As we were working in 'base 16', instead of'base 2' for

the binary and 'base 10' for the decimal numbers, six other

symbols were needed. The letters A to F are used.

Hexadecimal numbers can be used in the same way as binary

ones, and easily replace them. For example the 8-bit binary

number 1010 1110 can be written as the hexadecimal number

AE. Each group of four binary numbers is represented by one

hexadecimal number, and vice versa. Converting between the

two is easy with the aid of a table. (Doing the same between

decimal and hexadecimal is far more difficult.)

If we look at our example of machine code and replace the

eight digit groups by their hexadecimal equivalents we would

then get the following:

A5 20

65 21

85 22

97

This is easier to read, but just as difficult to understand! If the

codes on the left are replaced with mnemonics representing

the hexadecimal instructions, the program now becomes:

LDA 20

ADC 21

STA 22

Or in English :

Load the Accumulator with the contents of address 20

Add the contents of address 21 to the number in the accumulator

Store the answer in memory location 22 (which should ring a

bell - see page 87).

The programmer has to know the first number he wants to use is

in memory address 20, the second in 21 and answer in 22.

Assembly
language

Going one stage further we could call the two numbers ONE and

TWO. We could also call the program ADD. It would now look

like this:

ADD LDA ONE

ADC TWO

STA RESULT

As long as the computer knows where the program started in

the memory - identified by the label ADD - and what memory

locations have been allocated to ONE, TWO and RESULT then

the program should work. This is obviously a very simple ex¬

ample and in practice things are more complicated. A whole

range of translation programs have been written, and these are

called 'assemblers'. These convert the assembly language pro¬

gram into the binary machine code and thus the assembly

language codes can be typed in at an ordinary keyboard.

High level
languages

There are a whole host of high-level languages, and most have

been written for one particular type of application or another.

For example, ALGOL has been written for general applications,

COBOL for business applications, FORTRAN for mathematics

work and BASIC for general-purpose introductory programming-

98

The latter is the easiest to use on small computer systems, and is
consequently the most popular. Unfortunately there are many
different forms - or dialects - in many of these languages. Which
one your particular computer understands depends upon the
software which it uses to translate the BASIC program into its
binary code. This makes things difficult if programs written for
one computer system are tried out on another. They will be
incompatible and will need translating.

Which language
should you use?

A high-level language like BASIC is more efficient in program¬
ming time, and is much simpler to use than assembler. Other
programmers can also understand what has been written, which
is useful if you want to exchange programs. Assembly language
and machine code, on the other hand, give the programmer the
ability to use the computer to its fullest capacity.

In general, BASIC is most suitable for 'interactive' applica¬
tions where the operator and computer want to 'talk' to each
other. Simple calculations, games, and other general-purpose
programs - such as training programs - are easier at this level.

Assembly language, on the other hand, is more suitable for
the control of peripherals and input/output routines, and pro¬
grams within the computer system. It also makes maximum use
of the small memory capacity of microcomputers.

High-level languages are usually the easiest method for the
majority of personal computer owners to use. Programming in a
high-level language such as BASIC is considerably quicker than
in assembly language. Machine coding is very time-consuming
to write, but machine-code programs usually run faster than
programs written in high-level languages.

Putting words
inside
the computer

We've said that the computer handles characters - letters and
numbers, as well as signs like *, / and so on — quite as much as it
does arithmetic. We've only talked about binary, though, as if
the computer is getting ready to do arithmetic. Stop for a
moment to see how the computer puts characters into a code of
binary Is and Os. Remember, arithmetic in binary isn't really a
code: it's just a different number base for counting than the 10
we use most of the time. When we put characters into binary it

really is used as a code.

99

Since we use the same 8-bit (1 byte) binary characters to

stand for both numbers and characters, we have to tell the

computer which we are storing. To avoid taking up part of the

code, this is generally done in the address of the location in

which we store the byte. In that one byte of information, we can

easily find codes for each character on the standard QWERTY

keyboard (very easily, you might say, reflecting that there seem

to be nearly 10 times too many).

The 'QWERTY' keyboard.
Each key can produce one of two
codes: one when the shift key is
untouched - giving, say, '1', and
'9' - and one when it is held down
- giving 'V and 4-' and

Do we really need so many? Well, there are 26 upper case

letters and 26 lower case (remember, a computer is a very stupid

thing: 'A' is quite different to 'a'). There are 10 numbers (0 to 9)

and 35 odd characters like ", ', &, £, etc. The machine also needs

characters for 'invisible' symbols like 'space' and 'end-of-line'.

In one way and another, there isn't a lot of change out of 128

characters - which is just how many you can represent using

7 bits (27 = 128).

Aha! says the alert reader: 'I thought we were talking about

8 bits' (28 = 256). This is perfectly true. The reason for the dis¬

parity is that one bit is saved up to cope with possible mistakes

caused by sending these characters down noisy, crackly tele¬

phone lines. The eighth bit can be set to 0 if there are an even

number of Is in the character; to 1 if there are not. In this way

the computer at the other end of the line can check to see whether

there's been a garble. If there has, it can ask for a repeat. This

eighth bit is called the 'parity' bit.

We won't explain exactly what codes the computer uses for

which characters, but it is worth mentioning that these codes,

when looked on as binary numbers, correspond to the alphabetic

order of the characters that are being encoded. A is 'smaller'

than B, and so on. This allows whole words to be 'counted' and

compared with others. This technique is used when sorting

words into alphabetical order, or pulling all those starting with

X, for example, from a list, or in the telephone directory program

in Chapter 1.

100

The limits to the
hardware ?

One of the most important things about the microelectronic

technology which lies behind today's generation of computers

is its smallness. The electronics is 'micro', the computers are

'micro', everything is 'micro'; and they are all getting even

smaller. Already people in Japan are talking about putting the

power of an IBM 370 - a computer that fills a large room - onto a

single chip a quarter of an inch square. What's the point? you

may be wondering. Do we really need a powerful computer

that's so small it could get lost in your pocket? Would not a

microcomputer be just as useful - or useless - if its processor

were six inches or a foot square instead of a quarter of an inch ?

The reason why smallness matters is buried deep in econom¬

ics and physics. To see why, we first have to take a look at what

a chip is and how it is made.

A close look
at chips

A chip, say a microprocessor, is simply a very great many elec¬

tronic switches which control each other in various ways. You

could make a device which did the same things rather slowly if

you had the money, patience and space, out of old-fashioned

post-office relays. Each switch on a chip is a microscopically small

transistor, similar to the transistors in a radio but on a minute

scale. Transistors are solid-state devices: that is, they have no

moving parts. They are made of a material that acts as a semi¬

conductor - that is to say a substance which can allow electricity

to flow under some conditions but not under others. Most chips

today are made of silicon, and areas of the silicon are 'doped'

with impurities to turn them into semi-conductive devices.

When the chips are operating, only minute amounts of currents

are used, which enables the transistors to be crammed very close

together without overheating.

The usefulness of a processor or a memory made up of some

tens of thousands of these transistors depends on two things:

1 How many there are.

2 How fast they work.

The speed of operation depends on two things:

1 The actual operating speed of a transistor, the time it takes to

switch from on to off, or vice versa.

2 The time it takes to send the resulting signal to the next transistor.

101

102

Stages in the Manufacture

of silicon chips.

Top left: A wafer of pure,

polished silicon is inspected in

dust-free conditions. Next it will be

heated to form an oxide coating

and covered with a photosensitive

emulsion.

Top right: A 'photographic mask'.
This contains a repeating pattern of

minute lines which are exposed

onto the silicon. Where the light

falls, the emulsion changes and can

be dissolved away, leaving an

exposed area which can be

chemically treated in various ways:

etched away, coated with another

substance or impregnated with

a 'dopant'.
Centre left: The treated disks of

silicon are exposed to a 'dopant' -

like the element Boron in this

ionising chamber. The dopant

changes the electrical properties

of the silicon.

Centre right: Testing the chips.

Each rectangle is a chip one of

hundreds on the surface of the

treated wafer. Minute, precisely

aligned needle-like probes make

contact with the connecting points

and all the circuits on the chip are

put through their paces. The chips

that 'pass' are separated and then

packaged up (see page 39).

Bottom: The surface of the chip,

showing the way that these
processes produce layer after layer

of change to make up the final

integrated circuit. The top layer

consists of metal connecting

wires which are 'condensed' on

to the surface.

The smaller the transistor is, the quicker it works; and the

shorter and narrower the connecting lines between transistors,

the quicker they work.

The process of putting the various devices onto silicon is

done rather like printing on paper - we'll come to it in more

detail below. However, for the moment what matters is this: just

as a printing works can only print a certain number of acres of

paper a day - a number that is determined mainly by the initial

investment in machinery - so a silicon chip factory can only

produce a certain area of silicon a day - an area limited by the

amount of expensive equipment it has. It turns out that the cost

of a chip is mainly proportional to its area, and has very little to

do with how complicated it is. In other words, it is just as

expensive to produce a 6-in diameter wafer of silicon carrying a

single transistor as it is to put 400 devices on it, each consisting

of 100,000 transistors. (American chip makers talk about the

area of silicon they can process as the 'Real Estate'.)

We can now see the reason why smallness is important in

microelectronics. Since it doesn't make much difference to the

final cost how many transistors go on a chip, the more there are

the cheaper each one is - or you can offer more computing power

at the same price. If that were the only advantage, it would be

well worth going for smaller devices.

However, there are other advantages too - as the transistors

get smaller, and the lines thinner, the chips become proportion¬

ally even more powerful. A new device, with lines half as wide

as an old one, other things being equal, can have eight times as

many components at the same cost.

Of course, there is a limit to how small we can make the

devices. Apart from the difficulty of drawing the lines, the com¬

ponents of the chip behave differently when built at a very

minute scale. We can, however, expect to keep on making more

tightly packed, more powerful chips until they reach roughly

200,000 times the power of today's. Since device densities have

roughly doubled each year since 1960, at that rate we might

expect the pocket computer to have the processing power of a

quarter of a million of today's microcomputers by 1990.

The smaller the devices, the more problems there are in

making perfect chips, and the higher the reject rate. Rough

calculations suggest that halving the line width (increasing the

power of the device by a factor of eight) reduces the yield of

usable chips from 30% to 1%. To overcome this chip makers

may have to do some lateral thinking, and try an entirely new

method of mapping the pattern of devices onto the chip.

103

At the moment chips are made using a photolithographic

process. As the lines get narrower, however, visible light be¬

comes an unreliable medium; its wavelength is too long, and the

lines get fuzzy at the edges. The next step will be to use X-rays,

which have a smaller wavelength, or electron beams.

Future hardware
and software

There is still a lot of mileage in miniaturisation. When the

practical problems get too great, the hardware engineers have a

lot more extraordinary ideas up their sleeves - everything from

using light particles instead of electrons, to cooling the whole

computer down to near absolute zero. But is more computing

power really what we need ?

In time, we can expect to find the power of large mainframe

computers on a single chip. Big libraries will be written into

read-only memory, so that a piece of equipment the size of a

calculator may well contain the complete Encyclopaedia Brittanica,
or its equivalent.

However, as we sketched at the start of this chapter, the

problem is not so much compressing information-storage and

increasing computing power; it's knowing how to use the

computing power when you've got it, which is the role of the

software provider. Many computer people believe that dev¬

elopments in software, in learning how to put to use the extra¬

ordinarily powerful machines we already possess, will be far

more important than further developments in hardware over the

next 10 or 20 years, in other words, thinking of ingenious new

ways to program the computer. There is every chance that the

next 20 years of computing may be even more interesting and

surprising than the last 20 years.

At this point we've reached a position where we're ready to

look at just what we can program the computer to do, and how

we go about it.

104

Understanding
programming

what computer program languages are. In this chapter we're

going to take one particular language, BASIC, and look at how

it is used - at what is involved in writing some simple programs.

First, though, a word about the language we've chosen.

BASIC
BASIC means 'Beginner's All-purpose Symbolic Instruction

Code'. It was originally developed at Dartmouth College in the

USA as a high-level language that would be easy to learn and to

teach. It was mainly intended for people who knew nothing about

computers but were keen on using them. Since then BASIC has

been further developed and become extremely widespread

throughout the world. Hundreds of thousands of different com¬

puter programs have been written in BASIC, many of them

available in books and magazines. Its recent rapid increase in

popularity has stemmed from the speed with which it can be

learnt and from its ready availability on microcomputers. Most

microcomputers, and many larger computers, have software

which enables BASIC programs to be run on them.

In some people's eyes, BASIC is not the world's best pro¬

gramming language but it is one of the most approachable -

especially for beginners, as its full name implies - and that is one

reason why it has been chosen as the main language for the BBC

105

Computer Literacy Project. One of BASIC's virtues is that the

various commands lead on very simply from ordinary written

language. What follows is an indication of how the language can

be used: it is not intended as a course in how to write BASIC

programs - another part of the BBC Project does that.

However, if you can struggle through and follow this

chapter you stand a good chance of being able to write programs

yourself, and then there is no substitute for trying it out on a

computer of your own, in your own time and at your own pace.

There are many different sorts of programs you can write in

BASIC but even if it isn't the best language for every program -

just as any one microcomputer won't be the best for every con¬

ceivable application - it is a flexible language. You may find you

would like to learn other languages later, but you will get quite

a fair way on BASIC alone - even if using it is sometimes like

getting a Frenchman to understand your English!

There's BASIC,

and BASIC,

and . . .

One of the problems with BASIC is that, rather like English,
it is a language which can be spoken in many dialects. Different
dialects in computer languages use different words and symbols
to mean the same thing; sometimes, too, they let us do different
things. Sadly, unlike in English, where someone from Yorkshire
can understand someone who comes from Somerset, computers
working in BASIC will only 'run' if the appropriate dialect is
used. Luckily, at the simplest end of the language most of the
instructions and rules are common to most dialects, so what
follows should apply to many microcomputers on the market.

We must stress, though, that we are trying to illustrate what

programming is about, not to teach you all about it. If you have

a computer and want to set about some serious programming y°u

will need much more detailed information on what your par¬

ticular computer can do, and which dialect it understands. As a

general illustration, you should find this chapter helpful but for

a detailed guide you will need to refer to the instructions that

accompany your machine or to do a course on programming like

the one associated with the BBC project.

Some of the attractive things which computers can produce

in the way of graphics output or sound can also be controlled

using BASIC. However here the various instructions involved

are most likely to be unique to the particular machine you are

using. Because these and other more sophisticated instructions

are 'machine specific' - to use the jargon - we will not deal with

them here.

106

The fundamentals Some things are common to all languages, including BASIC. They

all have some way of dealing with the four fundamental activities

on which nearly all programs are based:

Getting things into and out of the computer.

Comparing things.

Deciding if something is true or not, and, if so, doing one thing

or, if not, doing another.

Doing something a number of times until some condition is met.

These are the basic abilities the language has. What differs

from one language to another is the way it sets about doing them.

Earlier on we looked at the three things the processor can do

in a computer: add, subtract and compare numbers. When a

program in a high-level language - like BASIC - is running, every

part of the program is translated automatically by software in¬

side the machine into simple steps which involve the processor

doing just those three things and it's possible to use a language

like BASIC without knowing anything about what happens

inside the 'black box'.

You will remember that the computer can only deal with one

instruction at a time, and that it needs to know in what order to

deal with the instructions in a program. Virtually every dialect

of BASIC uses one simple and very useful tool to help it do this:

it numbers every line in the program.

LillC numbers *n Pr°grams we write you will see that each instruction, or
group of instructions, has a number. The computer starts at the

lowest number in the program and works its way through. It

doesn't necessarily carry out the instructions in strict numerical

order, though. Instead, it can be told to jump from one to another.

In fact, computer programs written in BASIC tend to look like a

game of snakes and ladders. Simple programs just start at the

beginning and go through to the end but most useful programs

are not like that! Instead, 'ladder' instructions tell the controller

to shift upwards to a later line number and 'snake' instructions

slide it back down again.

Incidentally, line numbers in BASIC are usually written

going up in 10s. The reason for this is a very practical one - if

we want to insert extra lines at a later date, it's then possible to

do so. We'll see all this later when we come to look at ways of

making programs easier to understand.

107

The ins and outs

i

2

1

2
3

PfciN r

Everything we 'tell' the computer we have to 'input' into it; and

everything the computer tells us it has to 'output' to us. Of

course, there are different ways of getting information into and

out of a computer, but we'll assume we are putting information

in by typing it in at a keyboard, and the computer is giving up its

replies on a screen. Two practical things to note:

When the computer is switched on it will display a 'prompt' -

some word or symbol on the screen which shows when it is ready

and waiting for a command. We will ignore prompts in most of

what follows.

Every micro has a button labelled ENTER or NEWLINE or

RETURN. This is produced whenever a 'packet' of information

typed at the keyboard has to be 'posted' to the computer. Again,

on the whole we will not indicate the points at which this button

needs to be pressed.

The first thing we have to do, then, in getting the computer to

do something is to give it instructions (unless they are already

inside the computer, of course). Let's say we want our computer

to add 3 to 4. We would type in an instruction. What would that

look like? Well, it would look pretty much like:

3 + 4

We've forgotten a couple of things, though. Most important, we

don't have any way of finding out what the answer is! In fact,

we'd never just tell the computer to add 3 + 4. We would always

tell it to do something with the answer. Do what? It might:

output it to us

store it somewhere for use at a different point

use it immediately for some operation.

If we type PRINT 3 + 4 and push the RETURN or ENTER button

then the computer answers immediately: 7.

What does PRINT tell the computer to do? It doesn't tell the

computer to add 3 to 4: the + sign does that. What it does is

to tell it to output the result. It is one of the peculiarities of this

language that we use PRINT when we mean output, even if it's

not printed output we want but words on a screen.

Suppose we want it to do something more complex. We can

join together a whole series of instructions like PRINT 3 + 4

with line numbers in front to show the order in which they are

to be done.

108

10 PRINT 3 4-4

20 PRINT 3 + 6

A SEQUENCE OF

STORED INSTRUCTIONS

A sequence like this is a program and it is not executed immedi¬

ately - it's stored. The individual instructions in the program are

called statements and, naturally, the numbers in front are the line
numbers. To execute the program you have to type the command
RUN. What RUN does is to transfer the control of the computer

from the operator (you) to the stored program. The computer is

no longer waiting for you to tell it what to do; it follows the

instructions in its stored program.

RUN will tell the computer to go to the lowest numbered

line in the program (line 10, in this case), and work through

until it reaches the end. Then it'll display READY, to show it's

ready to do something else. (Note: in some dialects the program

should always end with a statement END or STOP.)

When an instruction like RUN is entered by the operator

without a line number, to be carried out immediately, it's called

a command. When it's part of a program it's called a statement.
So in BASIC, PRINT, for example, can be used as a command or

as a statement - depending on whether it's the operator (you) or

the program that's in control at the time.

So, we have two operations in our short program: PRINT and

+ . We don't include the RUN command in the program itself,
though we need it to make the program work. All the keywords

like PRINT that the computer recognises we will write in capital

letters, to distinguish them from other words we use in the

program and because many computers expect keywords to be

typed as capital letters anyway.

When we RUN our program, then, what will the computer

output? Try it yourself, if you have a computer to use. What

you should see on the screen is:

READY

RUN

7

11
READY

109

Filling out

the dialogue

That's fine as far as it goes, but it doesn't go very far, does it?

7 what ? we might be thinking to ourselves. Perhaps it would be

better if the computer output read:

3 + 4 = 7

5 + 6=11

Let's modify our program. We would have to write this:

10 PRINT "3 + 4 ="; 3 + 4

20 PRINT "5 + 6 ="; 5 + 6

Running this program will produce just that result. But how?

Numbers and
characters

1

2

You'll have realised that the vital difference between the first

3 + 4 and the second 3 + 4 is the inverted commas " ". To

make this clear, we have to draw a distinction between numbers

and characters. What's the difference? Take, say, '123'. As

characters, that's a 1, a 2 and a 3. As a number, it's a hundred and

twenty-three. Anything between inverted commas is called a

'string and the computer regards it as just a sequence or string

of characters without any special meaning.

Letters are characters too, and the inverted commas mean

that the computer will keep whatever's between them, numbers

or letters, exactly as it is. Instruction keywords between the

inverted commas will also be treated as characters, so the com¬

puter won't take that first as an instruction to add anything

together.

We can use this convention to make the computer print just

about anything. Then, by using punctuation marks like the

semicolon and the comma between print statements we can

display the words on the screen in different ways. Here are some

examples: on the left are the programs, on the right the results

of running them:

The programs The results

10 PRINT "BBC, LONDON" BBC, LONDON

10 PRINT "BBC," BBC,

20 PRINT "LONDON" LONDON

110

3 10 PRINT "BBC,

20 PRINT "LONDON" BBC, LONDON

4 10 PRINT "BBC", "LONDON" BBC LONDON

5 10 PRINT "BBC, "LONDON" BBC, LONDON

You will see that punctuation marks between inverted commas

are ignored as instructions; they are merely part of a string of

characters. So in example 1 above, the comma after BBC is not

significant as an instruction to the computer. The same is true in

example 2, only here there are two PRINT statements and the

computer prints them on separate lines. Example 3 has a semi¬

colon after the inverted commas. This instructs the computer to

print the next thing on the screen right up against the first. So,

punctuation marks outside pairs of quotation marks are able to

be instructions to the computer; those inside are not.

Example 4 uses a comma instead of a semicolon. This tells

the computer to separate the print statements by about a quarter

of the width of the screen. (It's like the tabulator on a type¬

writer.)

Example 5 produces the same result as example 1 but has

two print statements separated by a semicolon. The semicolon,

as we have seen, prints one right against the other. Notice that

to avoid the result BBC, LON DON a space has to be included here

before LONDON in the second statement, or after BBC, in the

first. These rules may appear a little strange at first but you

should soon find them becoming clear when you see how they

are applied.

Replying It would be a move forward if we could get the computer to say

hello to us personally. Of course, we could do that by putting

our name into the computer program. But we can also do it by

putting our name as data for the program to use, as it's running.

You will remember in Chapter 2 how we distinguished

between instructions and data, and we said that (broadly speak¬

ing, and with some exceptions which we will come to later) the

data is put into the program while it is running. So far we've

been talking about putting the program itself into the computer.

Now let's think about putting the data to the program.

We use another instruction to tell the computer to obtain

some 'input', and this time it's just what you would expect:

111

INPUT. It tells the computer to do two things: to wait for some

input at that point in the program, and to display ? on the

screen - so we know we've got to input something.

Just as the computer has to do something with that answer,

so it has to do something with the input: find somewhere to put

it. And before we see how the INPUT statement works, we must

look at the business of 'locating input'.

Variables

luorms -

As we said earlier, one very important job the program language

and the associated software have to do between them is to find

a place to put all the information when it is not actually being

processed.

In BASIC, we don't have to identify a storage location where

the information will be put. In other words, we don't have to

tell the computer, 'Slots 34789 to 34850 in the memory are

empty: put this word in there.' But we do have to tell the pro¬

gram to make room somewhere to store the information, and we

do this by setting up 'a variable'. A variable is the name we give

to the location. The idea of the variable is one of the most im¬

portant in computing. Mathematicians will find no difficulty

with it, but others might. To help, here is another analogy. One

way of thinking of a location is to think of it like a box or a pigeon

hole with a name on it. The name tells you what the name of the

box is but not what is inside it. What goes inside the box can be

changed but the name of the box cannot. In the computer

program, the box with its name is the variable. The variables can

have different values in just the way that the box can have

different things inside it, but it can only have one value at a time.

In a BASIC program there can be two kinds of variable - two

kinds of 'box'. One is called a 'numeric variable' and it can only

have a value represented by a number. The name of the variable

must begin with a single letter, followed if necessary by a

number or the rest of a word. In some versions of BASIC only

the first two letters of the word will be significant (this means

that if we were to call one variable 'age' we should not call

another variable anything beginning with 'ag').

The other kind of variable is called a 'string variable'. A

string variable, unlike a numeric variable, can be anything we

like: a 'string' of characters - whether they are letters or numbers

or both. Providing we enclose them in quotes, numbers and

symbols will be treated as characters by the computer. It won't

change them, and can't do any arithmetic on them. The contents

112

of string variables must always be put in inverted commas and

to let the computer know what kind of variable we want, all

string variables must end with a dollar sign #. Below are some

examples which should help to make this vital but confusing

state of affairs clearer.

Numeric variables

Name

Can be one or more letters or a word, eg A or AGE or a letter

followed by a number, ega2

Value

Can only be a number, eg85 or 85.23

String variables

Name

Must end in #

Could be a word, eg name#, or a letter, egN# or letter + number,

egn2#

Value

Anything in quote marks, eg "Father Christmas", "Father

Christmas, age 85" ,"85 years"

If we now go back to our input command and tell the computer

to input our name, we need to make available a string variable,

since names are not numbers. We can then use commands we

have already met to make the computer say hello to us.

10 PRINT "WHAT IS YOUR NAME"

20 INPUT name#

30 PRINT "HELLO, name#

And some notes of explanation:

Line 10

When we use the INPUT statement, all that is going to appear on

the screen is a question mark. If we want to know what we have

to input, we have to tell the computer to ask us. That is what this

line is doing.

Line 20

You will see that we don't have to tell the computer to set aside

113

Decisions and
branches

a location called name# When we first use the location name

name#, the computer will automatically do this. All we have to

tell the computer to do is wait for the input, and then it will

allocate it to the variable name#

Line 30

Look carefully at where the inverted commas come. We don't

want inverted commas round the variable name#. If we did

have them, what do you think the computer would print? Right

- not the contents of the 'box' but its name, ie not Peter (or

whatever your name is) but name# The semicolon tells the

computer to print the words next to one another. So it's im¬

portant to leave the space after HELLO,

We've now reached the point at which we can hold a conversa¬

tion with the computer even though we have to tell the computer

in advance what to say! If we take that last programme again,

and underline our side of the conversation we could see this on

the screen:

RUN

WHAT IS YOUR NAME
?

JANE

HELLO, JANE

READY

That takes us quite a long way but before we go on to the next

stage, actually solving a problem on the computer, we must take

a look at the most important aspect of programming: telling the

computer to make decisions.

Let's take a new problem as our example for this section: check¬

ing passwords.

If you have ever used one of the new cash dispensers which

are appearing in the walls of some high street banks you will

know that it is necessary to enter a personal code as well as your

cash card before you can withdraw cash. If you fail to give the

right code after a few attempts, you may lose your card, while

if your reply is right, you can go ahead with the withdrawal.

Many computer systems use a security system of passwords or

passnumbers before individuals can gain access.

The flow diagram can work for

simple passwords or numbers.

In real life, below, two personal

code numbers are used for extra

security - one on the plastic bank

card and one which the customer

keys in.

Ask for
today s
password

Receive the new
password and put
in a location
or 'box' called
PASSWORDS

Ask tht
customer
the password

Receive the answer
and put it in a
location or box
called ANSWERS

NO VIS

Print a
rejection

message

(iive the
i ustomer

access

We can draw a flow chart to show how such a system could

work. This particular system might be used, for instance, at the

beginning of a bigger computer program, to enable you to allow

only those customers who know the password to use the pro¬

gram. What is more, you (the programmer) could change the

password as often as you want.

Most systems give the customers several attempts, but that

is a refinement we'll leave till later. You'll see that we have:

two points at which data is put in,

a point at which the two pieces of data are compared and a

decision point at which the computer has a choice of routes to

take.

115

IF ttOOTH Op£"N THEN FeEO

-fccse &c>n't

How do we program this? Let's give the program first, and

explain the new features afterwards :

10 PRINT "PROVIDE TODAY'S PASSWORD"

20 INPUT password#

30 CLS

40 PRINT "PLEASE GIVE PASSWORD"

50 INPUT answer#

60 IF password# = answer# THEN GOTO 90

70 PRINT "HELP! CALL THE POLICE!"

80 STOP

90 PRINT "CORRECT. YOU MAY PROCEED"

Lines 10 and 20 you should be able to follow. Line 30 contains a

new instruction present in some dialects of BASIC - CLS - which

clears the screen, in this case for obvious reasons. But what

happens in line 60? We have three new key words: IF, THEN

and GOTO, as well as another instruction - the symbol =

These all mean just what they say. If whatever follows the IF

command is true, then we are given special instructions. If it is

false, these instructions don't apply, and we carry on to the next

line of the program. These special instructions tell us to 'jump'

and go to line 90. So in this case, we wouldn't carry out the

instructions on the lines between here and line 90 at all.

Note: In some better BASICS it is possible to rewrite this program

more simply using an ELSE instruction:

60: IF password# = answer# THEN PRINT "CORRECT. YOU

MAY PROCEED" ELSE PRINT "HELP! CALL THE POLICE".

In fact, lines 70 and 80 form the right-hand branch of our

program and line 90 is the left-hand branch. We must put STOP

or END at Line 80 otherwise HELP! CALL THE POLICE would
immediately be followed by CORRECT. YOU MAY PROCEED*

There are only two choices: either the data in the two locations

is the same, or it isn't. We could, however, have several IF . . •

THEN statements in a row if there are more than two possibilities.

We'll see this in later programs.

We must always put some other statement after the IF

statement, so that we know what the special instructions are.

This will usually be either a THEN or a GOTO or both, as we

put in our program above. In some dialects, we don't really

need the THEN in line 60, because the GOTO tells us what

116

afef

to do. Some dialects demand THEN every time, so we'll leave

it in. Some insist on GO TO and will not run if the space is left

out, instead telling you there's an 'error'!

Note: If a computer doesn't like something you've written into

the program it may do one of a number of things:

Print SYNTAX ERROR or MISTAKE when you try to run the

program.

Print a longer error 'message', giving details of where the error

is - for example, what line it is in.

Refuse to let you enter the line in to your program at all until

you have found the error.

Print an error number (which you need to look up).

Looping the loop One of the other fundamental things we can ask a computer to

do is to repeat something a fixed number of times or until some

condition is met. For example, we could modify our password

program to give the customer three chances at the password

before sounding the alarm.

This time we'll put the line numbers from the new program

against the relevant boxes in the flow diagram on the next page.

10 PRINT "PROVIDE TODAY'S PASSWORD"

20 INPUT password#

30 CLS

40 LET mistakes = 0

50 PRINT "PLEASE GIVE PASSWORD"

60 INPUT answer#

70 IF password# = answer# THEN GOTO 120

80 LET mistakes = mistakes + 1

90 IF mistakes<3 THEN GOTO 50

100 PRINT "HELP! CALL THE POLICE!"

110 STOP

120 PRINT "CORRECT. YOU MAY PROCEED"

130 END

We've only introduced one new keyword, LET, but we've done

quite a few new things:

Line 40

LET, used like this, is the way we name a new variable. We are,

117

10

'Input' new password
and put it in a
location called
'PASSWORD#'

118

U)oft.K\5 - 0)ocr*\$ 4- l

as it were, naming a 'box' which we are going to use later to

count the number of wrong guesses. And this is a numeric

variable, so its name, mistakes/ doesn't have a $ sign. Initially

there have been no guesses, so the value of mistakes is set at 0.
Line 70

This time, we do have two ... IF statements running, because

there are three possibilities: the customer is right, he's wrong

but has another chance, or he has been wrong three times.

Line 80

This is how we change the value of a variable using the LET

instruction. (The new value in the 'box' is the old value plus 1.)

This often causes confusion because mistakes = mistakes + 1

looks like a maths equation that doesn't balance. It isn't like that.

It means, effectively, let the new value be equal to the old score

plus one!

Line 90

Here we introduce another condition and if it is met, the program

returns to line 50. The condition asks if the number in the

mistakes 'box' is less than 3. If it is, then the customer can have

another go. If it is equal to 3 then the condition is not met and

the program goes on to line 100. The (sign means 'less than'.

Note: If <(means 'less than', in a similar context) would mean

'greater than', = would mean 'equal to' and \) would mean

'not equal to' - in other words 'either less than or greater

than'.

If you have a computer, try out these programs, putting in

different right and wrong answers. If you don't, you can still

try them out by imagining how the computer would work down

the program if you put in various answers.

Documentation We've gone quite a fair way towards having the computer tell

us what it's doing and what input it wants. What we haven't yet

done is to provide a full explanation of what each part of the

program does in the program itself.

You may feel we don't need to in these short programs but

if you have stored a number of programs on the same cassette,

say, or if you have written a very long and complicated program,

it is a great help to provide a little more explanation. We call

these explanations 'documentation' and we use a new keyword,

REM (for 'Remark') to put them into the program.

119

The computer doesn't do anything whatsoever with what we

write inside a REM statement. It just skips over it when the

program is running. Nor does it print out the remarks. To find

out what they are, we have to use yet another command, LIST.

Typing in LIST will make the computer list the program in

its memory. To be a bit more selective, we can type, say,

LIST 50

and the computer will just display line 50. Or

LIST 50, 80

and it will show lines 50, 80 and all the lines in between. This

command is useful to alter a line which contains a mistake.

We'll tie all this together by going back to one of the

problems we used in Chapter 2, the test on the times table, and

seeing how we might set about programming that.

A child's
maths test

You'll remember that in Chapter 2 we drew up a very simple

flow chart for this, and added a more complicated one for doing

the test by hand. Now we'll draw up one for doing it on the

computer, and add two extra features. We'll have the computer

talk to the child by name, and we'll limit the number of wrong

answers the computer will accept on any single question to four.

1 REM Program to test multiplication

2 REM by asking random questions

3 REM using numbers between 1 and 12

10 PRINT "What is your name"

20 INPUT name)!

30 PRINT "Hello, name$;" - Let's try this question"

35 REM Generate two random numbers

40 LET a = RND(12)

50 LET b = RND(12)

55 REM Set counter for errors to zero

60 LET count = 0

70 PRINT "What is a ; "x"; b

80 INPUT answer

90 IF answer = a*b THEN GOTO 170

100 LET count = count + 1

110 PRINT "Wrong."

120

115 REM Check if there have been four errors

120 IF count = 4 THEN GOTO 150

125 REM Offer another try if count is less than 4

130 PRINT "Try again. You've had count; " tries."

140 GOTO 70

150 PRINT "You've had four tries. The answer is a*b

160 GOTO 180

165 REM Advise if answer is correct

170 PRINT "Well done, " name#

175 REM Offer additional question

180 PRINT "Want another go"

190 INPUT reply#

200 IF reply# = "YES" OR reply# = "Yes" OR reply# = "yes"

OR reply# = "y" OR reply# = "Y" THEN GOTO 40

210 PRINT "That's all!"

Say 'that's 4 1

160
tries'and ^ive

the correct
answer

4 -

Lines 40 and 50 are designed to generate random whole numbers

between 1 and 12. It's like throwing dice, electronically. We

will not attempt to explain how this is done but the random

number generator is a useful technique. (Note: In some BASICs

you will need to type in something more complex to get this to

happen.) In line 90, the symbol * means 'multiply' to the com¬

puter. In line 70 we wrote x, but as it was enclosed in quotation

marks the computer does not treat it as an instruction but

as a string character. In line 200, the computer has just asked

the child if he or she wants another go. The child might type in

YES, yes, Y or Yes and the computer asks itself if any one

of these has been entered. The computer will only recognise the

reply if it is exactly in the form it has been told to look for.

Because the computer is incapable of guessing your intention,

any sort of reply other than these (e.g. 'all right', 'if you like')

will send the computer to line 210. Note the way the new key¬

word 'OR' is used.

There are many conversations we could have with the

computer if we ran this program, depending on what our replies

were. Take one 'run' of the program. Our replies are indicated.

READY

RUN

What is your name
?

George

Hello, George - let's try this question

WHAT IS 5 x 6
?

35

Wrong

Try again. You've had 1 goes

25

Wrong

Try again. You've had 2 goes

30

Well done, George

Want another go
?

NO

That's all

READY

122

It's hardly an Oscar winning dialogue but it's a real conversation

and every response the computer makes shows us it has taken

notice of the last thing we said to it.

We could improve this program in many ways. We could

ask which table the child wanted to answer questions on and

ask a set number of questions (perhaps checking to make sure

we didn't repeat any). We could keep a running total of the

number of right and wrong answers, and tell the child at the end

of the test, with a suitable comment ('That's very good, George',

'Not bad, George', 'Sorry, you failed' or whatever you fancy).

What other improvements can you think of? With the pro¬

gramming tools you've already acquired, you should be able to

think of ways to try to program quite a few of them for yourself.

You may have noticed that there is a small flaw in the program,

and there may be others. In 'computerspeak' mistakes in logic

or in the actual coding of the program are called 'bugs'. Often

these may go undetected for some while because the program

works perfectly well, most of the time.

The flaw here is a trivial one. When in line 130 the program

says PRINT "Try again. You've had count; " tries" this is fine

when the count of the number of tries is two or three. But if it

is the first try, the program will produce Wrong. You've had

1 tries which is ungrammatical to us but not to the computer.

This could easily be dealt with; can you think how?

There is a vital point to be made here: it is very difficult to

check programs for every conceivable eventuality. The larger

the program the more difficult it is and many programs being

sold (or published in magazines) contain bugs. Some of these

may be programming errors - an obscure IF-THEN branch, for

example, might lead to a computer syntax error if one condition

is met but the program might run perfectly well otherwise.

One simple example might be a program which invites a

response Y or N in answer to the question 'Do you want another

go?'. Suppose the person running the program types in 'You

must be joking'. The computer may well treat the first Y as 'Yes'

and act accordingly.

10 33s. .^'Trrf'k

-kSgsn-TV
_- '

Three more
techniques

The next program is a jargon generator' - an amusing way of

producing high-sounding phrases like 'viable on-going situa¬

tion', to add a touch of bogus class to memos or correspondence.

We won't give you a flow chart for this example, but we had

better explain what we will be doing in the program.

We are going to take three different lists of 'jargon' words,

with 24 words in each. The first two lists will contain adjectives,

and the third nouns. Then we will set these up in three lists in the

computer. Next we will pick random words from each set to

make up jargon phrases using one word from each list. (For this

we will use the random number generator we used in the times

table example.)

The program introduces three new ideas:

1 Putting data into the program itself

So far, we've talked as if all the data we need for our program is

going to be put in while the program is running. Often, though,

you'll have all the data for your problem available when you are

writing the program. If there is quite a lot of it, you will find it

more convenient to put the data into the program itself.

This situation is the big exception to the general rule we

outlined in Chapter 2, that the program is a set of instructions,

and the data is what the instructions are carried out on. In this

instance, the program contains the data too!

Two new keywords are used: DATA, which tells the com¬

puter that what follows is just that - a list of bits of data - and

READ, which allocates the data into whatever variable 'boxes'

we choose to name. Data and read commands are particularly

useful when we want to enter lists of things into the program.

2 Arrays

In computing, an array is the name given to what we might

call a list. It is a list of variables, each place in the list being like a

separate 'box'. As before, the variables can be numeric or string

variables. Imagine a postman delivering letters to a row of box¬

like houses in the same street. Each house has a different number.

The letters will have the same street name but different numbers

for the different locations.

Similarly we might call our array in the computer A$(10)/

meaning we had ten 'boxes' in the 'list' called A$ and each of

the boxes could have different contents. (Note: Sometimes the

number of boxes could be eleven because the first box can have

the name A$(0), just to add to the difficulty!)

124

In the following program we are going to make room for our
three lists of words by creating three arrays. We need to tell the
computer to make room for the arrays and to do that we use a
DIM statement (DIM for dimension). In other words we tell the
computer that we want it to make space available of a particular
dimension for some data. We then 'read' the data into the boxes
one at a time using our third new idea as given below.

3

1
2
3

4

The 'for-next' loop
This is a second useful way of looping the loop (see page 117) and
is possibly the most difficult idea to grasp but it is the last one
we'll be introducing!

Described in words theFOR-NEXT loop goes something like
this: For every value of a variable from 1 to, say, 24 do some¬
thing and then alter the value of the variable by one. Go on doing
whatever it is until the value of the variable is 24, then stop. In
the case of our lists of data we are saying to our 'postman':

Here is a list of data with 24 items.
For every value of n from 1 to 24.
Read the nth bit of data and put it in the appropriate nth box in
the row of boxes called a$ • For example, put the 5th bit of data
into the 'box' named A$(5) •
Then increase the value of n by 1. In other words go to the next
value of n which in this case is 6 and then take the 6th bit of data
and put it in the box named A$(6) and so on.

For. CHtctcs =. I To 4.
(five tooRM-

In our 'jargon generator' program this procedure is used for each
of the three lists of words to get them in the computer. We then
have a procedure for picking one of the words from each list at
random and then printing the three one after the other to pro¬
duce the jargon phrase. Here's the program:

5 REM JARGON PHRASE GENERATOR
10 REM RESERVE SPACE FOR ARRAYS
20 DIM a#(24)
30 DIM b$(24)
40 DIM c$(24)
50 DATA basic,divergent,programmed,operational,affective
51 DATA child-centred,multi-,emotive,disadvantaged,on-going
52 DATA informal,ultra,interdisciplinary,cognitive,relevant
53 DATA correlated,extra-,innovatory,viable,supportive,elitist
54 DATA micro-,creative,advanced
60 REM FILL FIRST ARRAY WITH DATA

125

FlLInI^ ArRfcfry

70 FOR x = 1 TO 24

80 READ a$(x)

90 NEXT x

100 DATA meaningful,procedural,significant,democratic

101 DATA sociometric,consultative,empirical,unstructured

102 DATA implicit,perceptual,psycholinguistic,coeducational

103 DATA reactionary,motivational,academic,conceptual

104 DATA socioeconomic,hypothetical,ideological,theoretical

105 DATA developmental,compensatory,diagnostic,experimental

110 REM FILL SECOND ARRAY WITH DATA

102 FOR y = 1 TO 24

130 READ b$(y)

140 NEXTy

150 DATA situation,over-involvement,evaluation,components

151 DATA disfunction,methodology,quotients,re-organisation

152 DATA rationalisation,activities,communication,resources

153 DATA synthesis,validation,techniques,consensus

154 DATA maladjustment,sector,criteria,autonomy,analysis

155 DATA polarisation,objectivity,strategy

160 REM FILL THIRD ARRAY WITH DATA

170 FOR z = 1 TO 24

180 READ c$(z)

190 NEXT z

195 REM GENERATE 12 JARGON PHRASES

200 FOR m = 1 TO 12

205 REM CHOOSE 3 RANDOM NUMBERS

210 LET a = RND(24)

220 LET b = RND(24)

230 LET c = RND(24)

235 REM PRINT RANDOMLY SELECTED WORDS FROM

ARRAYS

240 PRINT a$(a);"";b$(b);"";c$(c)

250 NEXT m

360 END

Lines 20/30/40

Here we are naming our three arrays. Since they will contain

characters, we have to add the $ sign. The DIM (for DIMension)

statement tells the computer that these arrays, and how much

space to reserve for each. Each array here will consist of 24 loca¬

tions. We are effectively naming the variables, too. The first

variable we use will be a$(l) through to the last variable which

will be c$(24).

126

The mechanical equivalent of the

computer's jargon generator.

(The idea first appeared in the

'Times Hducational Supplement').

Three concentric, cardboard discs

can independently be spun round.

As they stop the words on each

disc come to rest in a random way,

producing the jargon phrases.

Lines 50/54

We tell the computer when one piece of data stops and the next

starts by putting in the commas. Our DATA statement, of course,

tells the computer that everything that follows it is data.

Line 70

This starts another little loop. We are going to repeat it 24 times.

Line 80

A READ statement usually follows a DATA statement. It tells us

where to put the data. And the a$ tells us we want this data to go

into array a$. The READ statement tells the computer to start

with the first piece of data, and to run down the list* of data in

sequence, unless we put in some other instruction. So we are

'posting' a piece of data into each 'box' in the array (24 times - 24,

because that's what we made x on line 70).

Line 200

Now all our data is placed, we start yet another loop to use it.

This one we will carry out 12 times.

Lines 210/220/230

These are instructions telling the computer to pick a word at

random from each array. We are calling these random locations

a, b and c. So a will be a location in array a$, b in array b$, and

so on (a, b and c are random whole numbers up to 24).

All clear? Let's see what we might come up with when we run

the program.

READY

RUN

correlated developmental communication

emotive diagnostic evaluation

advanced democratic objectivity

creative democratic disfunction

emotive implicit rationalisation

correlated empirical re-organisation

multi-socioeconomic rationalisation

ultra procedural techniques

on-going unstructured resources

emotive diagnostic components

extra-psycholinguistic autonomy

programmed meaningful maladjustment

READY

127

We have now introduced most of the basic rules and conventions

of BASIC. Many of the concepts are difficult to grasp at first but

become clearer as they are put into practice. Courses on BASIC

introduce the concepts in a much more leisurely way than we

have been able to do and reinforce the understanding of each one

with many exercises and examples. We will finish with one last

example.

Choosing a route You may have realised that we could use this kind of approach,

but with numbers as well as characters, to solve the 'route¬

finding' problem we looked at in Chapter 2. We'll close this

chapter by seeing how we might approach it by following the

solution we outlined in the flow chart on page 62.

The flow diagram and the program which follows may appear

to offer an absurdly complex way of deciding how to get from

A to B when there are only seven different routes. However, it

should be seen as the core of a program which could be enlarged

in various ways to deal with many different places and many

different routes. At the various points in the program where data

(details of fares, length of each journey and so on) is introduced

it would be possible to introduce more data than we have at

present and, provided that we altered the size of the arrays

accordingly, this would enable the program to perform a very

large number of comparisons and become really useful. Thinking

laterally for a moment, it would also be possible to use this kind

of program for other purposes - for deciding on the choice of a

hotel, for example. The variables could be the type of room

(double, single, with or without bath), price, the star rating of

the hotel and so on.

This time we will break the program up with a description

of what we are doing. In a properly documented program some of

these descriptions would be condensed down into brief 'REM'

statements which would be part of the program. (However, it

should be noted that REM statements do use up a lot of memory

space in a program.)

First, we reserve space (dimension) for our lists (arrays) of

things which vary. These variables are the length of time for each

journey, the method of travel (bus, train, etc.), the fare and the

preferred way of travelling. There are seven different routes so

we will need to set aside seven empty 'boxes' in each array by

using the DIM statement.

128

10 DIM time(7)

20 DIM fare(7)

30 DIM method $(7)

40 DIM preference(7)

The data which needs to be put into these arrays is as follows:

Route number (R) Time (hrs) Fare (£) Method Preference
1 1.50 8.00 Train 2
2 2.20 7.50 Bus + train 3

3 2.30 6.50 Bus + train 3

4 3.00 5.00 Bus 4

5 1.00 10.40 Plane 1

6 2.50 6.00 Bus 4

7 2.30 5.50 Bus 4

We now need to fill the empty arrays with data. To do this we

use the 'data' and 'read' instructions and use a 'for-next' loop

seven times to fill up each array.

50 DATA 1.5,2.2,2.3,3.0,1.0,2.5,2.3

60 FOR R = 1 TO 7

70 READ time(R)

80 NEXT R

90 DATA 8.0,7.5,6.5,5.0,10.4,6.0,5.5

100 FOR R = 1 TO 7

110 READ fare(R)

120 NEXT R

130 DATA train , bus + train , bus + train, bus , plane

131 DATA bus , bus

140 FOR R = 1 TO 7

150 READ method $(R)

160 NEXT R

170 DATA 2,3,3,4,1,4,4

180 FOR R = 1 TO 7

190 READ preference(R)

200 NEXT R

(Note: the method array is a string array and in some machines

it is necessary, unfortunately, to put inverted commas round

each piece of data.)

Next, we have a rather curious looking couple of lines. Later on,

when the program begins to run, we might want to compare

129

fares one at a time to see which route has the lowest fare value of

the fares looked at so far. This lowest value is then held in a

variable called lowest. But what happens when the first route

is looked at? The program requires it to be compared with

something. In this program we set the value of the variable to an

arbitrary value higher than anything likely to be found in the

routes to follow. It could be any value we like, and the person

who wrote this program has chosen to make the value 9999. As

the first fare goes through, it is compared with 9999 and found

to be lower, so it becomes the new value of lowest.

The same argument applies to a variable called optimum.

210 LET lowest = 9999

220 LET optimum = 9999

We need to ask whether the customer is most concerned about

the cost of the journey or the time it will take. The answer to the

question should either be COST or TIME. If it is 'Cost' then the

program branches one way, if it is 'Time' it branches another.

But just in case some other answer has been given to the question

the program asks the question again.

300 PRINT "What are you concerned about

310 PRINT "COST or TIME";

320 INPUT choice #

330 IF choice# = "COST" THEN GOTO 330

340 IF choice# = "TIME" THEN GOTO 330

345 GOTO 320

350 PRINT "What is the " ; choice #;" limit";

360 INPUT limit

370 IF choice# = "COST" THEN GOTO 500

Lines 350 and 360 next ask the customer what limit he wants to

set for cost or time. This value is then held in the variable limit.

Next, depending on whether or not the choice earlier was cost or

time, the program branches. Line 370 decides which way to go.

If the condition is met, then the program goes to line 500; if not,

it carries on. It will carry on to the next line if the choice was

'TIME'. Note the semi colon at the end of line 310 to make the

'?' which is produced by the INPUT statement in line 320 print

up against the end of the question produced by lines 300 and 310.

It also means that the answer to the question is entered on the

same line as well.

0* '

best =

The next section of the program is used if the choice was

'TIME'. It asks for every route 'is the time for this route larger

or smaller than the limit the customer has chosen?' If it is smaller

then the route qualifies for more consideration and the search is

on for the cheapest route which meets this requirement.

400 FOR R = 1 to 7

410 IF time(R)>limit THEN GOTO 480

420 IF fare(R)>lowest THEN GOTO 480

430 IF fare(R)<lowest THEN GOTO 450

440 IF preference(R))optimum THEN GOTO 480

450 LET lowest = fare(R)

460 LET best = R

470 optimum = preference(R)

480 NEXT R

490 GOTO 600

In this section lines 400 and 480 establish the FOR-NEXT loop,

the value of R being the route number - from 1 to 7. Line 410

asks if the time for a given route is greater than the limit set by

the customer. If it is, it sends the program down to line 480 which

says 'next route, please'. Line 420 asks if the fare is greater than

the lowest found so far. If it is, then the route is rejected and the

next route is look at.

In line 430 if the fare is less than the lowest then the program

goes to line 450 and the fare for this route becomes the new value

of the variable 'lowest', the 'best' route takes the value of R for

this route, and the 'optimum' way of travelling is the preference

for this route: 1 for plane, 2 for train and so on.

Finally we come to line 440. The program only reaches line

440 if the fare is neither greater than nor less than the lowest

value found so far (in other words it is the same). We agreed in

Chapter Two that if two routes cost the same amount then the

decision about which one is the better depends on the preference

about transport. In this instance, the program asks if the 'pre¬

ference' for this particular route is higher in value (i.e. less

desirable) than the preference for the previously found best

route. If it is, the route is rejected. If it is lower, then this route

becomes the 'best' so far. When all the routes have been looked

at the program goes to line 490 and this directs it to line 600,

which we'll move to in a minute.

If, earlier, the choice in line 370 had been 'COST' the program

would have ignored lines 400 to 490 and gone to line 500. This

section of the program does exactly what the previous section

131

did only comparing first the cost of each route with the limit and

then looking for the quickest route amongst those which qualify.

500 FOR R = 1 TO 7

510 IF fare(R)>limit THEN GOTO 580

520 IF time(R)>lowest THEN GOTO 580

530 IF time(R)<lowest THEN GOTO 550

540 IF preference(R)>optimum THEN GOTO 580

550 LET lowest = time(R)

560 LET best = R

570 optimum = preference(R)

580 NEXT R

The last section of the program looks at the results of all these

comparisons and prints out the best route. If no route has met

the fundamental requirement that it is cheaper than the limit or

longer than the limit set earlier in line 360 then the 'lowest' value

will still be that arbitrary 9999 and the program prints out 'Think

again, nothing fits'. Otherwise, if all is well it takes the value of

the variable best (i.e. the best route number), the value of

method# which has the value of the best route number and

the values of the time and fare for this best route.

600 IF lowest<9999 THEN GOTO 630

610 PRINT "Think again - nothing fits"

620 GOTO 300

630 PRINT "You should travel by route"; best

640 PRINT "using"; method#(best)

650 PRINT "It will take ";time(best);" hours and"

660 PRINT "cost ";fare(best);" pounds"

670 END

Here is a sample 'run' of the program:

RUN

What are you concerned about -

COST or TIME? COST

What is the cost limit? 6.5

You should travel by route 3

using bus + train

It will take 2.3 hours and

cost 6.5 pounds

This program is by no means the last word on the subject! It

could, for example, be modified relatively easily to print out the

132

route itself - in other words to say 'you should travel from

London to Godminster via Camford'. The point is, of course, to

give you some idea of how such a program could work, not to

produce the most elegant program imaginable.

By now you should have some idea of the kind of logic

involved in writing a program in BASIC. Even if you do not feel

capable yet of writing programs of the complexity of the ones we

have just seen, you can get a good deal of pleasure from attempt¬

ing simple programs. As in any language, practice makes perfect:

you could take a course in BASIC such as the one associated with

the BBC project. The alternative to writing your own programs

is to buy programs written by other people and run them on your

own microcomputer.

The next chapter is about the practical business of having

and using your own machine.

A Japanese travel agent.

Although most Japanese offices are

paper driven', the computer is

rapidly taking over. Here they can

plan railway routes for you and

book hotel rooms in an instant

using the new technology.

133

You and your
microcomputer
Why have over 100,000 people in the UK already bought their

own computers when systems still cost from £50 upwards? Some

of the users have a technical background but there are many

more who had no knowledge of computers when they started.

These include doctors, lawyers, postmen, housewives, teachers,

restaurant owners, pharmacists - people from all walks of life,

in fact, and their numbers are increasing all the time.

Some have quite specific applications ready for the computer

- often in connection with their jobs. A growing number of

people are discovering that the microcomputer offers them a

fascinating new interest - an intellectual challenge which is

quite addictive.

Schools are now obtaining micros and are finding that they

can be used not just in the science and maths departments, but

in English, geography, history, and even languages as well.

Armies of schoolchildren now occupy their spare time writing

programs and some countries are introducing computing into

the curriculum for all children and students as an essential part

of their education.

Then there are those people who feel they 'ought' to know

something about computers, who perhaps feel insecure in their

jobs as new technology looms over the horizon and who want

the security which comes with understanding.

Others who've taken the plunge include the hobby enthusiast

who prefers to put his or her own computer together - partly

because it's cheaper that way, but also for the pleasure of doing

the whole job alone from a computer kit.

The programmable microcomputer can be a useful tool in a

wide variety of areas but it is by no means yet the miraculous

device which some people would claim. It's no good buying a

£100 machine and expecting it to control your greenhouse or to

keep all your household records in its memory or to be able to

process and print out your letters. You can do a lot with a simple

system and get a lot of fun out of it. However, for the professional

134

The BBC microcomputer in its

simplest form, using a domestic

television set as a display and an
ordinary cassette tape recorder

to record programs and to play

them back.

person with his eye on the future who wants to use the computer

in his work, the writer who wants to build up a text processing

system, the architect who wants to rationalise the calculations

for tenders, the businessman who wants a cheap accounting

system, it is important that the computer should be able to do

a good job, and the cheapest hardware may not be enough.

There is also the question of software - the computer may be

physically capable of doing a job but there may not yet be a

suitable program available which will enable it to do it.

Before we look at some of the many things which low-cost

microcomputers are being used for, let us look at what the

simplest systems can do and how some of them can be expanded.

135

The simplest
personal
microcomputers

So many advertisements for microcomputers are appearing in the

press that the beginner, who has an interest but not much know¬

ledge, may be forgiven for feeling bewildered. Although to some

extent when you buy a micro you get what you pay for, the value

of what you buy may depend in the long run more on what soft¬

ware is or will be available and on the extent to which the

machine can be expanded than on the basic equipment you get

for your money.

Well, what do you get for your money? Imagine you've just

bought a typical small microcomputer. What will using it

involve?

The box containing the system most likely contains:

1 A user guide, which should contain details of how to get the

machine going and how to write simple programs. It will also be

a reference book providing details of the use of the various

instructions in the language - which will probably be BASIC.

2 The machine itself, which will have a keyboard and various

plugs and sockets at the back or underneath.

3 A connection to the mains power supply which provides the low

voltage on which the computer runs, either through a transformer

which is inside the computer or in a separate box outside. The

separate power supply is less convenient and involves yet

another item to plug in.

4 A lead to connect the computer to the aerial socket of the tele¬

vision set.

5 A lead to connect the computer to a domestic cassette recorder.

6 There may be a sound cassette tape supplied with the equipment

containing some sample programs.

Connecting the simplest system

together. The leads shown

a) Connect the microphone,

earphone and 'remote' (cassette

motor control) sockets on the

cassette player to the cassette

'interface' socket at the back
of the microcomputer.

b) Connect the UHF output socket at

the back of the microcomputer to

the aerial socket at the back of the

domestic television set.

136

Switching on
and getting going

When the computer has been supplied with power and is con¬

nected to the television set through the normal aerial socket, the

first thing that needs to be done is to tune the set for the computer.

A microcomputer designed to work through a television set has

within it a small transmitter which produces a signal which needs

to be tuned in just like tuning in to BBC-1 or ITV. Most televisions

have a spare tuning knob which can be used for this and once the

set has been tuned in to the computer's frequency the tuning can

be left ready for next time, without interfering with the present

tuning of the set for ordinary television. The computer should

produce some message on the television screen - like 'READY'

or a symbol like) and then it's a matter of fine tuning to get

the clearest lettering.

Ready :
run

The owl and the
pussy cat
went to sea

Rtidy-
rxm

Tht owl and tht
pussy cat
Mnt to s«a

The difference between lettering on

a not very well adjusted colour

television screen and that on a black

and white monitor. The latter gives a

high resolution and can be used for

up to 80 characters to the line, which

is required for word processing.

Lettering on the television screen will not be quite as clear as

the lettering produced by a video monitor. A video monitor is the

kind of screen used in closed circuit television systems and does

not have to be tuned to a television frequency in the way that a

television set does. A serious computer user will probably use a

monitor rather than a television, but it will only be possible to

use such a screen if the computer has a video output socket.

Equally, some more expensive computer systems come with their

own monitors and they may not be able to run on ordinary tele¬

vision receivers. Black and white video monitors are fairly cheap

but colour monitors are still relatively expensive compared with

the domestic colour television set.

137

The keyboard If you are familiar with the keyboard of a typewriter the com¬

puter keyboard should not be much of a surprise. It will have

extra keys, though, and a typical layout is shown below.

II 11 11 f4 its. 11 ■ Hi mm wm
fa1 BREAK

m
B

II

2
%
5

&
6 ^ si A \

B Q W E R T Y U

IFd CTRL A S D

(a < £

Z X C V B N M

The keyboard of the BBC

microcomputer, showing the

(almost) standard typewriter layout,

and the various specialised keys.

Some of these are described in

the text. The top row of keys are

'user definable'; those on the right

with large arrows are the 'cursor j

control' keys.

2

3

4

The most important extra keys are:

The RETURN or ENTER key which is used to enter a program

line or a command alter it has been typed and has appeared on

the screen.

The CURSOR CONTROL keys - these are used to move the cursor

around the screen. The cursor is the marker which shows the

position on the screen where the next character you type in will

appear. If you want to edit a line in a computer program it will be

necessary to move the cursor around to the points where the

changes need to be made.

The BREAK key - this interrupts a program while it is running

and enables you to run it again or continue programming.

The DELETE key - this enables you to rub out the character you

have just typed on the screen if you have made a mistake.

Other keys on the keyboard have functions which are explained

in the user guide which comes with the machine. Some of them

may be 'user definable' keys, meaning that the user of the

machine can decide (by typing in the right instructions) what

138

each key should do. Supposing, for example, that you are writing

a program which uses the PRINT statement very frequently.

You may want to save yourself the trouble of always having to

type in the word PRINT, in which case a user definable key can

be allocated to print the word for you.

Writing
and running
a program

Writing a simple program is now only a matter of carefully typing

in the line numbers and the statements using the rules of the

dialect of the language your machine understands. At the end of

each line of program, press the RETURN button, and then type

in the next line.

When you have written a program type in RUN and press

RETURN and the program should run. If you have made a

mistake the program will stop and an error message or error

number will appear on the screen. The error messages will either

be self explanatory or else you will need to look each one up in

the user guide to find what it means.

Most computer manuals will have programs listed in them

which you can type in directly yourself. The important thing

here is to type them in accurately. Even a misplaced 'space' could

cause the program not to run.

Saving your
programs - the
cassette recorder

Two kinds of connector.

Left: With two 'DIN' plugs,

jhght: With a 'DIN' plug and three
jack' plugs.

Once you have slaved for hours over the keyboard composing a

program which actually runs - or typing one in from the manual

or from elsewhere - remember that simply by accidentally

switching off the computer you could lose the whole thing - the

memory will be erased and all that effort wasted. This is where

the simplest kind of backing storage comes in useful. The

domestic cassette recorder can be used to store and replay all the

programs you type in to the computer.

Most machines will come with a lead to connect the computer

to the recorder. (Make sure you have the right kinds of connector.

The two most popular are shown. If you have the wrong sort a

hi-fi shop should be able to provide you with an adaptor.)

Assuming the recorder is properly connected, programs can

be stored on a cassette by pressing the record and play buttons

on the tape recorder and then typing a command on the computer

to send the program. The recorder will then record the computer

output as a series of bleeps. Some computers contain a 'motor

control' which will switch the tape recorder's motor on when the

139

program is about to be recorded and off when it has finished. 4
motor control is almost essential if, later on, you want to use the

cassette recorder to store data as well as programs.

Every program you record on tape will need to have a name

so that it can be identified and distinguished from other pro-

grams when you come to play it back. You need to give a name to

the program at the time the command is given to the computer to

send the program to the recorder. So if your program were the

one to test a child's multiplication tables (from Chapter 4) you

might want to call the program TABLES • The command typed

in could be SAVE "TABLES" (followed by pressing of the

RETURN button). The computer then sends the program to the

recorder, preceded by a 'label' which in effect says 'this program

is called TABLESIt will take a short while for the program

to be recorded on tape and the recorder should not be touched

until everything has been sent. Some machines make a noise

through the loudspeaker while the program is being recorded

and the end of the program will correspond to the end of the

noise. In most systems a visual prompt on the screen will tell you

when the recording is finished.

In order to play back a program, run the tape back and type

in the appropriate command - which might beLOAD "TABLES"

and press return. The computer will tell you to play the tape and

it then 'listens' to the tape until it finds a program labelled

TABLES and then takes the program into its memory. If the

program is not the first one on the tape the machine may well

display on the screen the names of all the other programs it passes

while looking for the one labelled TABLES • Once it has found

and loaded the program the 'prompt' will appear and all you

need to do is to type RUN and the program should work.

At this point it is worth pointing out that though the cassette

recorder is a cheap and cheerful way of storing programs it is also

a source of considerable frustration to many microcomputer

owners. Sometimes tapes fail to play properly. The volume

control on the recorder may need to be set at a very precise level

before programs will load, crinkles in the tape may cause im¬

perfect recording or playback, dirt on the playheads may cause

trouble and it only needs one 'bit' of information to be incorrect

for the program to fail to work. With practice, though, tapes can

be made to work reasonably well and they are undoubtedly a

cheap way of storing programs.

One major irritation caused by tapes is their slow speed. If

you have a number of programs recorded on one tape it's

impossible to find the right one by listening to the tape yourself.

140

Sound, colour,

graphics

and movement

L»~ t'
High resolution graphics on the screen

(from a music applications program).

Other people's
programs

To the human ear all tape recorded computer programs will

sound alike - just a screeching noise - so the computer will have

to look at each one on the tape until it finds the right one unless

you have an idea of how far into tfhe tape the program is, in which

case you could run the tape to a position just before the program

starts and run it from there. However, it is better to use short Cl2

cassettes for your programs - do not be tempted to use cheap

C90 or C60 cassettes. If you do, two things happen. First, record or

playback errors become common and second you could spend a

long time looking for a program.

In Chapter 4 we looked at the simplest commands and instruc¬

tions in BASIC which most dialects will understand. In the case

of the more recent machines coming on the market, some of the

exciting things which you can do involve the use of sound, colour

and graphics, three areas where individual machines almost

certainly differ from one another. Instructions like PLOT,

COLOUR, DRAW and BEEP enable you to draw lines on the

screen, produce different colours and make sounds of different

pitch (if the computer has a loudspeaker).

Two examples of the kinds of program made possible by the

use of these keywords are games involving collisons between

moving objects on the screen and music programs, where it is

possible to use the computer keyboard to compose music which

appears as notes drawn on a musical stave created with graphics

on the screen and which can then be played back as music

through the computer's loudspeaker.

One way of looking at the present microcomputer scene is to

compare it with piano playing in the early days of the gramo¬

phone at the turn of the century. In those days, as now, a family

might own a piano on which individual members of the house¬

hold could learn to play and get pleasure from playing, however

badly they did it. The same family could also buy the newly

invented gramophone records (or cylinder recordings) of pro¬

fessional pianists and enjoy those as well. The present micro¬

computer scene is similar; individuals can get enjoyment and a

feeling for computing by doing a little programming themselves -

however badly. In the same way that some people become very

proficient at playing the piano so some will become reasonably

141

good programmers. At the same time it is now easy to buy pro¬

grams (applications programs) written by other people to run on

your microcomputer. At present, rather like the early gramo¬

phone records, the programs are not very numerous and not

always particularly good. However, just as the sophistication of

the gramophone industry has grown over the years both in

quantity and in the quality of what it offers, so the market for

commercial microcomputer programs is likely to grow and their

quality is likely to improve in the next few years.

Continuing our analogy, commercial gramophone recordings

were supplemented in the late 1920s by the advent of broad¬

casting which provided a new and 'free' source of music. In the

computer world similar developments may also not be far off. It

is quite possible now to broadcast 'telesoftware' using the

teletext services offered by the BBC and IBA and in a similar way

to obtain computer programs down the telephone line using the

Post Office's Prestel system. The truth is that these are early days.

The simplest commercial software which can be bought on

audio cassette is loaded into the computer in the same way as

programs you might write yourself. Problems arise if the software

is written in a dialect of BASIC not recognised by your machine

and this will continue to be a problem until there is some agree¬

ment over standardising BASIC itself. Other problems arise if the

program is too long for the computer to handle because it fills up

all its random-access memory. This brings us to the question of

expanding the microcomputer system. Most microcomputers,

other than the very cheapest, are capable of a good deal of expan¬

sion and of being able to link to a number of different 'peri¬

pherals'. Most of the examples of applications mentioned later in

this chapter involve expanded systems, expanded in different

ways depending on the application.

Memory expansion Computer programs involving a lot of text use a good deal of

memory and the first thing you may want in the way of expan¬

sion is to increase the memory of the machine from its initial IK,

4K or 16K of random-access memory to a higher value. (K stands

for kilo or thousand - well, nearly. IK of memory is actually

1,024 bytes in the computer world, and 4K is 4,096 bytes [1024

is 210 and 4096 is 212 . . . and so on].) Some computers can have

their memory expanded by simply having extra memory chips

plugged in by a dealer: others may need an expansion box to be

connected to the machine. To give you some idea of how much

142

Peripheral devices

Disc drives

memory a program occupies, the route finding program in

Chapter 4 occupies about 1.5K of random access memory.

Besides RAM expansion some computers also have the

capacity to expand the amount of read-only memory (ROM).

Remember that the ability of the computer to understand BASIC

instructions depends on a BASIC interpreter chip held in ROM.

Other languages can also be plugged in so that there is a choice

for the user. Alternatively, applications programs which are

going to be used often can be frozen onto ROM chips and these

can be bought and plugged in. Word processing programs are a

good example.

All kinds of devices can be connected to the computer to make it

do different things if it has been designed to link up with them.

Some are quite expensive compared with the computer itself and

are only likely to be used in, say, a small business or professional

application. The diagram overleaf shows some of the more impor¬

tant ones.

The disadvantages of the cassette recorder can be overcome by

use of 'floppy disc' units (see page 88) which enable a much

larger amount of information to be stored and found very quickly

indeed. These discs are magnetically-coated discs of thin plastic

which are held in protective envelopes. When they are inserted

into the disc-drive housings they are able to rotate and can be

read by a recording/replay 'head' which can move over the radius

of the disc and either 'write' or 'read' information at any part of

the disc.

Almost any serious application will require a disc drive unit

or a pair of units and the cost of these and the electronics needed

to link them with the computer will probably be more than the

machine itself, though prices are expected to fall as more of them

are sold. A good deal of business software is available on disc but

it is very important to find out from a reliable, independent

source what precisely is possible, what it is likely to cost and how

well it works, before launching out into disc storage.

Using a 5" disc drive unit.

The removable panels beside the drive itself hide sockets for plugging in

circuit cards which provide extra memory and other facilities.

143

144

printers

An inexpensive thermal printer,

right, which uses a special heat-

sensitive paper.

Expanding the system.

Provided that the microcomputer has

been designed to be expanded, a

range of 'peripheral' devices can be

linked to it. The most important of

these are shown left.

Games paddles

Printers can be quite cheap or very expensive, depending on the

quality of the print you want to produce. If all you want to do is

to keep a written copy of your computer programs (by asking the

computer to send the listings to the printer) a 'thermal' printer

would do. This uses a special heat sensitive paper which changes

colour where a heated spot on a moving print head touches it.

Next in quality - and price - is a dot matrix printer (see page

93). This kind of printer can provide print of quite an acceptable

quality for printing invoices and sheets of sales data. It uses

ordinary paper.

The best quality printers are the 'daisy wheel' or 'thimble'

printers used for word processing systems - in 1981, prices range

from £1,200 upwards-produce impeccable quality print and can

usually have interchangeable typefaces. Many of the printers on

the market will run when connected to the microcomputer

through a standard 'interface'. However, getting them to work

properly and at the right speed initially may require the help of

a technician - so, again, take advice.

Games paddles are 'joystick' devices which can be plugged in to

some computers to enable you to play 'bat and ball' games on the

145

screen. Many games can be played on the computer using the

keyboard alone, so these games paddles are not essential if you

want to use the computer for games.

The ‘joystick' control. Moving the

top of the stick causes the symbols

to move around the screen in a

similar path.

Teletext

and Prestel

Both broadcast teletext and the GPO's Prestel services are sources

of a great variety of information which can be received and dis¬

played on the television screen. Collectively they are referred to

as 'viewdata'.

Teletext uses a hitherto unused part of the television signal

to send digitally-coded information through the air; Prestel sends

similar information down the telephone line and then through a

special adaptor into a television receiver. Teletext is free but

is only able to transmit information in one direction; Prestel costs

the user the price of a telephone call with additional charges for

some of the pages of information supplied but it is possible to

send information in both directions along the telephone line,

which means that Prestel is capable of two-way communication.

The digital data supplied by these services can be read by

attaching decoding devices to the computer and can then be

146

Teletext.

Top - The digital information which

makes up the BBC's Ceefax service is

seen here as a row of dots which

seem to 'run along' the top two lines

of the television picture. A suitable

decoder converts this into pages of

text on the screen.

Middle - Ceefax editorial staff

compiling pages - in this case an

index and a financial page.
Below - A Ceefax page of

'Telesoftware' designed not to be

read but to be loaded automatically

into a suitably connected
microcomputer, which can then run

the program. This makes teletext

capable of being a vehicle for

'interactive' material.

147

stored in the memory. The data could be straightforward in¬

formation - like news, weather or stock market figures, or it

could be an interactive computer program, in which case it is

called telesoftware. Viewdata represents a way in which com¬

puter software will be distributed in the near future. Teletext

will provide a free service; Prestel software could be commercial

paid for through the telephone bill.

Both Prestel and teletext are systems pioneered in Britain.

The two systems have been developing independently but do use

a common way of presenting information on the screen; the

microcomputer with add-on teletext and Prestel decoders may

be the means of bringing the systems together in a powerful

new way.

Analogue
input/output
devices

How do you go about using your microcomputer to run your

greenhouse, for example, or control a model train set or weigh a

beehive (see page 75)? If you plan to try this sort of thing, then

you will need a machine with at least one input/output 'port' - a

connection point for adding input or output devices to the

machine. This allows information to be sent to and from the

computer in the binary form used by the processor, and thus lets

you connect or 'interface' all sorts of things to the computer.

Simple devices like switches need little interfacing as they

are essentially binary devices. Thus burglar alarm systems lend

themselves easily to computer control. In the other direction,

equipment can be switched on and off fairly simply by signals -

suitably amplified - coming from the computer. Computer sys¬

tems with internal timers or clocks obviously help here.

If other signals need to be handled, special interfaces like

analogue-digital converters are needed. Sometimes these are

built into the microcomputer - we saw in Chapter 3 (page 93) how

these convert varying voltages into equivalent digital signals, as

required by the computer. This makes it possible for it, (or
example, both to simulate sound and to manipulate and process it.

Computers with the right analogue input/output devices can

be used to control, and get information to and from various in¬

struments like temperature sensors or weighing devices. Thus

they can become intelligent controllers in, say, a laboratory.

There is a great deal of emphasis (particularly in education)

on making use of the computer to control things, so it is very

likely that the next few years will see a variety of control sensors

and activators coming on to the market.

148

Chickens weighing in.

A microcomputer application in

farming. As each bird hops on to the

perch its weight is recorded by the

computer. In this way the computer

builds up a complete picture of the

spread of their weights. This can

help the farmer (or the computer)

to judge how much food to give and

when the birds are ready for market.

What can
microcomputers
be used for ?

One very common area of application for microcomputers is
playing games. We have become familiar with computer-based
games in the amusement arcade — 'space invaders' is a good
example - though more conventional games like noughts and
crosses, chess, draughts, bridge and backgammon have also been
adapted for the microcomputer. Games will become more popu¬
lar, since many of the newer microcomputers - especially those
aimed at home use - have good graphics, usually in colour. Most
games involve the use of graphics, probably using a colour or
black and white television screen.

Many of the games involving objects moving fast across the
screen or involving a great deal of calculation on the part of the
computer (like chess) have programs written in low-level machine
language, but many of the others are written in BASIC. Books of
BASIC games programs are on the market and some of them even
help you write your own.

149

Stretching the mind. Computers at a Games are not only for amusement. It is quite fashionable

chess tournament. among so-called computer experts to run down the playing of

games on a computer. Most microcomputer users will tell you

that one of the easiest and most pleasant ways of learning how to

program is to get hooked on a game, want to learn how it works

and then try to write your own. Among the reasons given by

many computer professionals for joining computer clubs is that

it is not possible to play games on the computer at work! If your

prospective computer is to be used in the home it most certainly

must have a games capability. This could mean an ability to have

games joysticks' attached, and possibly sound output. The joy¬

stick allows the operator to move graphic symbols on the screen

and some form of sound output adds that extra 'something'.

Computer games can also be 'mind stretching'. Most desktop

systems can now play a passable game of chess, backgammon or

bridge, or other games of strategy. Many of the computer maga¬

zines devote a large proportion of their editorial space to games

programs, and this is a cheap and easy way to keep your library

up to date with the latest developments.

The great thing about the microcomputer is its interactive

nature. The computer will usually prove a worthy opponent, at

whatever level of difficulty you agree on!

150

Educating yourself

English primary school children with

a low-cost commercial spelling tester.

Computer-aided learning programs are available that can help
with maths, physics, French, English and even computer pro¬
gramming. Now that equipment is becoming cheaper, schools
and colleges are able to buy a computer for a modest amount of
money. Even where budgets are being slashed, the computer
seems high on the list of most schools' equipment requirements.
Unfortunately the use of machines in schools is still limited by the
lack of good software and the lack of teachers trained in their use.
Cheap computers, though, can be bought by students and used
in the home, and this is where a lot of parents will meet them for
the first time.

Those people who have been in the microcomputer business
since it began - about five years - like to compare the impact and
projected numbers of microcomputers to those of the pocket
calculator. The availability of cheap pocket calculators has had a
profound effect on the teaching of mathematics and science.
Similar things are happening with computers and the impact on
all areas of teaching could be enormous.

There are several types of program used in education:
1 drill and practice
2 tutorials
3 simulation or modelling
4 a combination of these four.

Drill and practice programs are used to help the student master a
skill he has already been taught but which needs practice. We

151

saw a simple example earlier with the child's 'times table' test in
Chapters 2 and 4. On a much larger scale, in many of the schools
in Dallas, Texas, for example, microcomputers are used regu¬
larly in the classroom to reinforce the teaching of a whole range
of primary maths skills. Students get tired or frustrated with this
kind of program if they have to sit at the computer too long but
they can be very useful, particularly if they free the teacher to do
other things. In Dallas, each child gets about 15 minutes of con¬
centrated activity each day on the computer. The programs,
written by the teachers themselves, make use of a wide variety of
techniques on the screen. The computers address each child by
name and can be programmed to test speed as well as accuracy,
keeping a record of the child's performance which the teachers
can refer to later.

Tutorial programs are designed to teach subjects to students by
providing them with pages of information and diagrams and then
checking if they have understood by asking questions. If the
answers are right the student gets directed one way; if they are
wrong he gets directed another, possibly having the information
presented a different way. These program-learning techniques
have some limited value for particular groups of students needing
to learn quite specific bodies of knowledge, computer program¬
ming itself being a good example.

An eight-year-old Dallas schoolboy

working on one of the many maths

programs written by the teachers of
the city.

A Student at London's Royal College
of Art working on a graphics
tutorial program.

r timm i

"•Mi_—=**

152

Simulation or modelling programs deal with real-world events

which can be mimicked on the television screen. It is not neces¬

sary for the user physically to encounter the actual problem

because data collected from the real world is often entered into

the programs; the main aim is to develop decision-making skills

as well as understanding.

Good examples are found in science where, for example,

students can perform experiments in chemistry and make predic¬

tions about the results of certain actions without the need to

touch any apparatus. In physics, a circuit diagram can be presen¬

ted on the screen together with questions asking what would

happen if particular switches were closed or certain components

introduced. In another example, a simple simulation shows how

gas molecules move around inside a box. By using the keyboard

the student can see what happens to the molecules if the box is

heated or compressed or a hole appears in its side.

A 'ballistics' simulation game.

Enemies on each side of the hill fire

missiles at each other, into or against

the 'wind'. Those playing the game

have to estimate the angle of fire and

the fire power needed to land on and

thus blow up the opponent.

One popular program starts with the words, 'If you stand on

a tall enough mountain and if you throw an object fast enough, it

will go into orbit.' Then the program asks you for your values of

elevation and velocity, and calculates what happens. Another

program shows planetary motion and the size and relative posi¬

tions of the planets in the solar system. The program can be made

to simulate planetary motion between any two dates in history.

Language teaching has not been forgotten, and most common

languages are catered for. In Russian, for example, a program

153

Hangman

Guess one of the remaining letters

correctly and it will appear in the

word. Fail, or spend too long

thinking about it, and the gibbet

man will be completed and your

game will be lost.

introduces you to the Cyrillic alphabet and then takes you

through simple grammar and vocabulary problems. Most lan¬

guage programs are designed to teach vocabulary and grammar,

but pronunciation will have to wait until good speech synthesis

and recognition are implemented.

To help teachers, special 'authoring' languages are being

designed. These allow pages of information, containing both

graphics and text, to be constructed far more easily than BASIC

allows. Decision points may be programmed so that correct and

wrong answers lead to different 'frames'. Whole programs may

be written using these languages and then recorded, like BASIC

programs, for later use. Author languages may be considered as

the next stage in the hierarchy of high-level languages.

Games programs are fun, as we have said, and educational games

that are well designed help students to develop their thinking.

Although there are thousands of these programs around, soft¬

ware development has not kept up with advances in hardware

and the software that is available is fairly poor at the moment,

although there are some good programs available in maths and

science. This is to be expected, of course, but it is only a matter

of time before programs get better, as more and more teachers

gain experience in the use of computers.

Business games are quite popular in management studies. The

student is given all the information to allow him to make deci¬

sions about how to run a business. 'Chance' events like a fire, or

sudden changes in commodity prices or interest rates, can be

built in.

For younger children, probably the most popular teaching

'game' is a computerised version of Hangman. You can usually

choose the level of difficulty, and how many wrong guesses are

allowed before a gibbet and cartoon 'man' appear on the screen.

Some of the better versions allow the teacher to change the word-

list, so that groups of words relevant to the class can be used.

Business applications When we come to consider the commercial use of microcomputers,

the options are many and varied. Even at the domestic level,

finance programs exist for keeping a check on your bank balance,

calculating income tax returns, as an address and telephone file,

diary-keeping and even cataloguing books and records.

In a commercial environment, the investment of a few thou¬

sand pounds will usually pay for itself in one year. American

studies have shown that any company with a turnover greater

than £100,000 p.a. is losing money by not having a computer.

154

Inside 'The Chocolate Box'

Phyllis Arrondale was introduced to

computing only two years ago. She

taught herself to write her own

programs and now finds the

equipment invaluable in running her

small business because, as she points

out, it enables her to know her exact

financial position at any time.

This does not mean that even smaller companies would not

benefit from computerisation. Book-keeping is an obvious job for

a computer. Large and medium-sized companies already make

extensive use of computer technology, but microcomputers now

make it possible for even small companies (including one-man

businesses) to rationalise their book-keeping, order processing,

current-account ledgers, invoicing, salaries, stock accounting,

budget and so on. People who have invested in microcomputers

include doctors, consultants, shopkeepers, stockbrokers, garage

proprietors and people running restaurants and hotels. However,

relatively simple microcomputer systems will not achieve much.

With business applications, the main factor governing the choice

of a system is not what the company is doing now, but what it is

going to be doing in three or five years time. Thus 'expandability'

has to be considered in a major purchase.

Word processing For the system to work in a rational and convenient manner,

it needs a lot of storage and this is the limiting factor in many

microcomputer systems. Above all, well written - and easily

modifiable - software is needed.

After business accounting, word processing and information

handling are the two most common uses of computers in the

office, and both are being revolutionised by the microcomputer.

It may be simple enough to write a letter, but typing an attractive

and faultless text is difficult for most of us, unless we are trained

155

The word processor.

This microcomputer doubles as an

accounting system and a word

processor. Foreground - a high

quality printer prints out a letter.

typists. A word processing system can be built around a cheap

microcomputer to make the whole procedure much simpler and

reduce frustration. Word processing essentially means that you

type the text in the normal way on a keyboard connected to the

computer, the text appearing on a screen and not on paper. With

the assistance of the computer, you then correct and edit the text

until it is exactly as you want it. After this, the computer linked

to a printer supplies a perfect printout, with as many copies as

needed, and the text can even be stored for later use usually on a

disc - though cassettes can be used. Specially-written word pro¬

cessing software enables you to produce the text on the screen on

command, to correct spelling errors, erase, add, exchange sen¬

tences or paragraphs and get a printed output.

Typical word processors automatically break the text up into

lines as you type. There is no need to hit RETURN at the end of a

line. The preceding line is re-displayed justified' to the left and

right margins. Lines can be centred with one keystroke, and set

in bold typeface or underlined in mid-paragraph. The text can

even be re-justified to new margins when necessary. Page head¬

ings and page numbers can easily be entered and pauses

between pages and headings can be inserted during printing.

As an example of how you can use your own word processing

system, let us look at letters. For each letter, you have to type in

your rough copy, edit it on the screen until you are satisfied, and

then get a copy printed. If you have a large number of letters that

are basically the same, you can also input an address list of the

people who are to be sent the letters. In this way each letter will

appear to be a personal one, despite the fact that the printout has

been done with the aid of the computer. You can even store a

number of standard phrases which can be called up when needed

and put together, for example in a contract.

Many letters we receive today have been addressed by a

computer. The microcomputer can be used in the same way as

large commercial computers to produce letters like these, and for

storing, updating and printing names and addresses. It may be a

list of members or customers - or perhaps even a list of Christmas

cards to be sent.

A word processing system can also be used for keeping mail¬

ing lists. A good mailing list program should contain search

routines, to make it possible to find a certain person in the register,

or to print out all those who live in a particular geographical area,

or to sort in alphabetical order and so on.

Professional word processing systems can cost anything up to

£10,000 or even more. Using a microcomputer with a word pro-

156

cessing program allows you to get a long way for considerably

less, although the range of facilities is limited. The peripherals

must include a good quality keyboard for inputting the text, and

a good quality output device such as a daisy-wheel, or similar

quality of printer (see page 45). The printer is the part that costs

money, especially if you want attractively laid-out copy with a

good quality typescript.

Stock control Many small companies keep track of their stock with a micro¬

computer. A computerised stock control system is usually com¬

bined with order entry and order invoicing. One aim is to

minimise the errors in copying the invoice to the stock record.

Stock balances tend to be more accurate if invoices are produced

immediately after goods are issued. Information about orders can

be made available quickly and, when required, the system should

be able to produce predictions about the chances of running out

of stock based on its past experience.

Stock control is one of the most important functions of a

computer in small, and large, businesses. The information base

built up allows not only the prediction of feasible future events,

but also 'modelling' of the business for forecasting and future

planning. When linked in with payroll accounting, sales and

purchase ledger, a powerful system can be developed for the

efficient and profitable running of the business.

Distribution A number of companies are now using microcomputers to organ¬

ise the most efficient methods for distributing products around

the country. The programs include road network analysis to

calculate the quickest route around the distribution network, as

well as warehouse and depot locations. Coupled with account

'clustering', these programs can be integrated into a total plan¬

ning system.

Computers in the warehouse

of a small company.

They provide for the easy

processing of orders and invoices

and an accurate record of all the

stock in hand at any one time.

157

Groups of independent lorry drivers have come together to or¬

ganise one computer-based information system. A central office

connects with computers at various points around the country

and customers with loads to be carried can telephone in locally

with their requirements. The local computers display the in¬

formation relevant to that area and plan the drivers' routes

accordingly. Information on the cheapest fuel distributors on the

chosen route is also available. Wherever the driver is, he can find

out what work is available locally and, together with the other

information, he can make the most efficient use of his vehicle.

Controlling things The application of computers to control things is one of the most

interesting and developing areas for using the microcomputer. A

modest system could be used as an aid to piano tuning, to monitor

and control an experiment in a laboratory or to control the

sluices, water levels and gates in a canal lock. Model railway

buffs are beginning to use microcomputers to control trains and

track layouts. One simple circuit will control 16 trains and 128

sets of points, for example. The potential list is endless. The main

challenges, though, are not usually with the computer itself or

even with the programs needed to get it to do the job - they are

the problems associated with getting meaningful information into

and out of the computer from the real world.

Opening up a new possibility.

The automatic operation of canal

locks is technically perfectly feasible.

Whether or not the capital investment

would make it worthwhile and

whether as a result most of the fun

would be taken out of a canal

holiday remains to be seen.

Take an imaginary (but perfectly possible) canal lock control

program, for example. This could contain some fairly simple

158

reflection in BASIC of obvious instructions such as 'if the lock

is full open the upstream gates and close the upper sluices'.

If you have understood the basic principles of problem solving

and programming you should now see how this kind of program

could be tackled.

The challenge comes when we try to measure whether the

lock is full or not and to get a lock gate to open. This involves

sensing devices and activators which need to trigger or be

triggered by the computer. In fact the lock gates problem is not

too difficult: a float could operate a switch when the lock is full

and a motor could open the gates. A switch is either open or closed

and a motor is either switched on or off, so here it is relatively

easy to get the computer, which deals in Is and Os (on and off)

to communicate with either of them through some simple cir¬

cuitry. This would, for example, use the low voltage signals of

the computer to control the more powerful supply needed for the

motor for the lock gates and sluices. These, in their turn, would

need other sensors to tell the computer when they were fully

open so that it could switch the motors off.

The electronic On page 70 we described the simple way in which an electronic

piano tuner piano tuner could do the job. In terms of the basic ideas it's easy

enough to understand but it's not so easy in practice. Again, the

problems arise when we get the sound from the piano and con¬

vert it into a form the computer can cope with. A microphone

could pick up the sound, producing electrical signals which

would need converting from their analogue (continuously vary¬

ing) form into a digital representation. An 'analogue to digital

converter' would be needed between the microphone and the

computer. The computer could 'sample' the waveform of the

incoming sound and compare the frequency with a figure held in

its memory. The results - too high, too low or the same - would

determine how an output device behaved. This could be a screen

which says whether the frequency is right or not and would be

the simplest kind of output. The human piano tuner could then

tighten or loosen the string accordingly until the frequency was

exact. More ambitious ideas for an output device which involves

a special kind of motor turning the tuning pegs are easy to des¬

cribe but are more difficult to realise. An enormous 'twist' would

be needed to overcome the friction holding the peg in its hole.

However, it is a possibility.

Future years will see more and more ingenious control appli¬

cations as the microcomputer becomes surrounded by a variety

of reliable peripherals suitable for linking it with the real world.

159

Computers for

the disabled

Computers for the disabled

'Mavis'. Using a foot operated

joystick-type of control, this severely

disabled boy can move the cursor

along the alphabet displayed at the

bottom of the screen and choose his

letter for a hangman game.

Small computer systems are changing not only the way disabled

people look at the world, but also how the world looks at the

disabled. Advances in speech recognition are beginning to do

away with the need for a keyboard. The ability to use highly

complicated equipment with little movement by the operator has

opened up completely new areas of work.

For example, it is possible for a severely disabled and dumb

person to control a machine, which makes audible sounds, with

just a toe. The control mechanism - which looks like a stick - has

80 different positions. Some represent words and numbers. Most

are sounds and parts of words, and by moving the stick to dif¬

ferent positions, the user can construct sentences which the

computer then 'speaks'.

Right:

'Splink' which enables a person with

a speech disability to create words

and sentences on the screen using a

touch-sensitive keyboard. The

keyboard contains some common

complete words (with black

borders) but mainly separate

syllables, used as building blocks.

If more movement of the body is possible, there is another

computer-related development. This system consists of a small

wordboard with around 950 commonly used words in alpha¬

betical order. The user depresses the appropriate words on the

keyboard, which is usually on the lap, and builds them into sen¬

tences which appear on an associated screen. An infra-red link

between the wordboard and the processor gets rid of loose,

trailing wires. There are individual letters on the wordboard

which allow individual words to be constructed, as well as

the key-codes which allow whole phrases to be used by only

touching one key.

160

Finally, a couple of unusual examples.

Bee keeping

»
4 & t

Newsagents

Choosing a system

In the West of Ireland a commercial apiary uses a small computer

system to keep track of its bees. The program ensures that a master

record is kept on each hive and its environment. This includes

information such as the height of the hive above ground, the

make of hive, the material from which it's constructed, the nature

of the surrounding countryside and so on. As all these factors

affect the welfare of the bees and consequently their honey, a

careful record is required. Up to 100 variables can be fed into the

system. The input can be amended to account for such major

changes as change of Queen, diet or location and the records can

be updated for production changes and other brood data. A

print-out from the computer provides a daily work schedule

showing which hives are to be inspected, their diet, and other

points to be checked. Incidentally, all input and output is in

Gaelic!

Still on the subject of bees, a school science laboratory in the

Midlands is aiming to use a microcomputer linked to an electronic

weighing device to weigh a hive every few seconds and keep

track of the results. In this way the pupils will be able to study

the comings and goings of the bees to see if there is any pattern to

their activity.

A number of newsagents are now using computers to schedule

the delivery boys' rounds. One company in the West country has

3,500 customers, and each morning and evening the paperboys

receive printed delivery lists. Each list is personalised and takes

account of the day of the week and the papers ordered. The main

benefits of the system include increased accuracy, reduced

clerical work and wastage of papers and a reduction in the num¬

ber of outstanding paper bills. The customers get their papers

earlier and the newsagent has a little longer in bed each morning!

It is very difficult to give advice which will satisfy every prospec¬

tive buyer of a microcomputer system. All the examples above

use different systems with different peripherals and different

software programs.

The very cheapest microcomputers on the market are ideal if

you simply want to find out a little about computing - but they

have their limitations. If you have a serious application in mind

or you feel that you might develop a long term interest, it's prob¬

ably best to buy a system which is capable of expansion and

161

which has a good, robust keyboard. However, to make a sensible

choice the best thing to do is to take advice.

Advice Reading the computer press is a good idea. There are now a

number of magazines on the market catering for the personal

computer owner which will give some idea of the range of equip¬

ment available. However, the first time buyer may well be

baffled by the hyperbole of the advertisements and the technical

language used in the articles reviewing equipment.

High-street computer shops exist, though many of them are

agents for particular makes of computer and therefore may not

be impartial in their advice. Nonetheless, they should be able to

demonstrate equipment and be able to discuss the availability of

software with you. The problem for many first time buyers is

that it is not easy to know what questions to ask and it is easy to

be impressed by demonstrations. But don't be afraid to say if you

don't understand the technical sales talk. A well established local

shop with a good reputation and knowledgeable staff may be a

very good place to 'get your eye in'. Micro systems centres and

other small advice centres - some run by public bodies like the

National Computer Centre - are springing up, able to give im¬

partial professional advice to, for example, the small business

man. Computer clubs exist and again, although individuals in

them are usually enthusiasts and very evangelical about com¬

puting and about the equipment they themselves have bought,

they can be helpful sources of advice. Ideally, advice can best

The Birmingham Micro Centre - one

of an increasing number of places

where prospective buyers can try

out standard business and

educational packages.

162

Some questions to ask :

1

2
3

4

5

6

7

8

9

10

come from people who have bought equipment for a particular

purpose similar to the one you may have in mind. One final source

of advice could be a local school or college which has a computer

studies department.

Is the system easy to use - as far as you can see? Does the manu¬

facturer have a good reputation?

Is the manual comprehensible, with a good index?

Can it be used at home on trial, without obligation to buy?

Is there a local source of advice about how to use the system if

you get into difficulty? What about servicing arrangements?

Is the system well supported with applications programs?

Does it have a reasonable amount of random-access memory?

Up to 4K will not support a long program; 16K will support a

substantial applications program, but more will be needed if a

lot of text data is to be stored. Can additional memory be plugged

neatly in to the machine or does it require an expansion box?

Does the machine support low, medium and/or high resolution

graphics, sound, colour?

b c

Low, medium and high resolution graphics.

a) 'Chunky' graphics, made up of fairly large square 'picture cells'.

For the computer's memory to 'map' all the pattern on the screen it

needs'IK'of space.

b) The same pattern in a higher resolution, this time needing '10K'

of space. The picture cells are much smaller.

c) High resolution, using '20K' of memory space.

Will the machine link easily to a range of peripherals like printers,

a disc system or viewdata ?

Will the machine accept plug-in ROM chips for specific applica¬

tions programs or extra languages?

Is the system capable of linking with other computers or with a

second microprocessor for future expansion?

Earning money

Above all, the question to ask yourself is - what do you want to

do with the computer?

One way of beginning might be to buy a cheap system and

then, having exhausted its possibilities, sell it and buy something

better. Alternatively you may find you have exhausted your own

interest, in which case you won't have wasted much money.

Another aspect to consider is that computing can become

addictive, as many a spouse has discovered as his or her partner

clacks away on the keyboard, deep into the night.

Some computer users consider the possibility of earning some

money the most important reason for buying a system. There is a

lack of really good software at the moment, and this is the first

area to consider if you have a 'forte' for programming. If you're

good at it then the purchase of a well known and popular system

could be the key to a prosperous future! Some people are now

making a living writing software for the major software distribu¬

tors. As these companies usually work on a straight royalty basis,

10% on a £10 program works out at a reasonable amount even if

only 10 a week are sold!

Many local retailers, unfortunately, do not have the software

expertise they need. Tailoring, or altering existing programs so

that they meet a specific, slightly different need, is a starting

point. If you are an accountant, for example, with programming

ability then your local retailer will probably welcome you with

open arms.

You could advertise. The computer magazines usually have

cheap advertising space for the one man band. You could even

contact your local computer clubs, since people with software

problems will contact them for help.

As more and more educational institutions now have com¬

puters, it is becoming easier to get a background in computer

programming. Similarly, the engineering industry is becoming

more and more computer orientated, and anybody with a talent

for electronics or programming (not necessarily mathematicians,

either) should consider a career in one or more areas of computing

- as a country we only produce about half the graduates industry

needs in digital electronics.

164

What the
computer
can't (yet) do

The limits
to growth
By now we should be far enough up the hillside of knowledge to

be able to turn round and take a broad view over the landscape, in

order to see what computers can, and what they can't do. What

do we want them to do? Well, the human race being the lazy

object it is perhaps would like computers to do all the tiring and

monotonous things of life, while we do the amusing, interesting

and creative ones!

165

Guess what this is. There are about

100 'bits' of information in the picture.

Teaching the
computer English

The same 'picture' but with 400 'bits'.

Making a living in the modern industrialised state tends to

mean that you sit at a desk or a cash register, stand at a lathe, sit

in the cockpit of an aircraf t or at the wheel of a car. You are asked,

first of all, to understand what is put before you. That involves,

firstly, either seeing or hearing. This bit of paper is an invoice for

£342.96. Over there is a road sign saying 'Ml and the North'.

The altimeter reads 15,000 feet and air traffic control is telling me

to climb to level 27. The phone rings and a voice says, 'Please

bring the Mutronics file to the Boardroom'. A trolley is wheeled

up, full of engineering parts - you have to drill 43 rivet holes,

one-eighth of an inch diameter, in specified positions. And so on.

It is just at this basic stage that at present the computer fails

us. We can't yet make it see as we see, or hear as we hear. The

computer may be stupid, but it is not lazy. We can tell it to

reconcile all our accounts, in one snap of the central processor.

But we are not doing nearly so well in teaching it to see, to hear,

or even to speak. To understand why, we have to take a look at

the information we process when we carry out what to us are

these simple activities.

The 26 letters of the alphabet combine to make some 15 million

permissible English words, let alone those in French, Spanish,

German and Yashmak. Simply to test a word to see if it is a proper

English word means looking for it in this 15 million word

dictionary.

The computer can do this, but so far we have concentrated

on teaching it to do it the logical way - the sort of way we used

to find Mr Brznski in the telephone book on page 32. In other

words, we tell it to test the first letter of the suspect word against

the first letter of the first word in the dictionary. If it matches, to

test the second, if it fails, to test the first letter against the first

letter of the second word. And so on, and so on. The amount of

computing goes up in proportion to the number of possible words

in the language.

Even at the speeds at which the central processor works, that

means it is an incredible task even to check one single word. (In

practice, programs that check spellings use a much more restric¬

ted dictionary.) However, this is only the first part of the problem

for as soon as we combine these words into sentences we create

a vast new family of symbols - that is, complete sentences. For

instance: Til meet you in the other place' and 'I'll meet you in

the other plaice' are two different sentences. Only one letter has

166

With 1,600 'bits' - the picture is

now recognisably a face. But whose?

. . . and to
listen to us

With 6,400 'bits'.

been altered from the first to the second, but that single letter

completely changes the meaning - or rather, reduces the sen¬

tence to gibberish. How do we explain to the computer why the

second sentence is gibberish? 'Plaice' is a noun, after all, just

like 'place'.

Of course, we could tell the computer to check sentences the

logical way, too - by putting into its 'dictionary' every con¬

ceivable meaningful sentence, and telling it to check 'I'll meet

you in the other plaice' to see if it is one of them. The volume of

sentences we'd have to include is vast. For instance, if we reckon

that the ordinary person uses about 10,000 words in sentences

less than 30 words long, we would have to include some 10,0003°

sentences (that's a 10 with 120 0s after it). Discs hold a lot of

information, true, but that volume of text would fill 10115 (10

with 113 0s) discs!

Clearly, logical methods aren't going to get us far. We must

take a lateral short cut and though computer people have some

ideas in this direction, they haven't solved that problem yet.

The problem becomes even greater when we expect the computer

not to read, but to listen to us. Before it can even start on this

mammoth task of working out whether what we are saying makes

sense (and we haven't even thought yet about how it might work

out just what that sense means), it has to work out just what on

earth it was we said.

We all tend to speak sloppily and our language, too, is easily

misunderstood. There are plenty of words which sound the same,

sometimes are even spelt the same, but have different meanings.

We usually have no trouble ourselves in working out which

word, or which meaning, is being used in a particular sentence.

The construction and meaning of the sentence give us plenty of

clues to go by. Indeed, we make so much use of the clues that if

the person talking to us makes a verbal slip we often don't even

notice - we 'hear' what we were expecting to hear. The computer

doesn't have that advantage, though. It is not made that way.

Let's take another example. In order to conserve 'band¬

width', the telephone system cuts out the high frequencies -

above 3,000 vibrations per second - in peoples' voices. As a result

the sounds that come down the wire for, say, 'seven' and 'heaven'

are actually identical. Yet we, listening at the other end, are very

seldom confused. We have been cued beforehand that the

speaker is going to refer to numbers or to theological concepts,

167

The 'paperless' electronic office may

be just round the corner (this one

uses a British computer system), but

we are still a long way from the

time when speech can be recognised

reliably by the ordinary computer.

Big mind —
little computer

and our mental interpreter is ready and waiting at the appropri¬

ate spot in our vast mental store to compare what comes in with a

range of appropriate possibilities.

Lateral thinking aside, it is still true that our brains are a lot more

powerful than a computer when it comes to finding and com¬

paring information in this way. Inside our heads we have room

for so many bits of information that, using the most advanced and

compact technology available today, storing that volume of in¬

formation would take a computer the size of the Albert Hall.

Having stored it, what could the computer do with it? Certainly

the human ability to jump around in this huge store of informa¬

tion, using very feeble clues, is something the computer can't yet

begin to touch. When you see a face in the crowd and recognise a

childhood friend of 30 years ago, and deduce from his appearance

quite a lot about his life since you last saw him, that is something

computers cannot start to imitate. Well, it's not so much that

computers can't think of doing it - it's that we can't begin to

think how to make them do it. As we said in Chapter 2, computers

don't solve problems for us, they just carry out our solutions.

And getting the computer to understand the language we write

and speak is a problem we haven't yet solved.

168

Teaching the
computer to see

Another problem we haven't yet solved is that of teaching the

computer to understand what it sees, in the sort of way that we

do. Getting the computer to see creates no problem - a video

camera can simply be connected to one of its input ports. How¬

ever getting it to make sense of what it sees is more difficult.

a

Left with 25,600 'bits'. Some people

can recognise the face by now. Try it

with your friends: would it help

them to know that it was a film star?

b
With 102,400 'bits'.

C
With 409,600 'bits'. It's Cary Grant

- but could the computer recognise

him? How could we begin to

explain to it how to recognise an

individual?

Let us just consider the problem of recognising Cary Grant, let

alone reproducing the way he walks and talks. Suppose that you

can recognise him from, say, 10,000 other people you might see

on your television screen, and that you can do this when his

image occupies a quarter of the screen for five seconds. Now, a

television picture consists of six hundred lines with about 600

coloured dots on each line - 360,000 dots altogether. Each dot

can be one of three colours, and can have several different

brightnesses. It turns out that it takes about six million bits, or

nearly a million bytes, to hold the information contained in a

complete television frame. Frames are repeated 25 times a second,

so the information we need to identify Cary Grant is contained in

250,000 x 5 x 25 = 31 million bytes and all this before we have

worked out a way for the computer to begin to do the same thing.

It would still have to pick out Cary Grant from the other 9,999

people the picture might show. If we were to store the informa¬

tion needed to do this on hard disc, it would take an hour a head

just to read the data that defines our image of Cary Grant. And

then, how would the computer know how the essence of Cary

Grant is hidden in those 31 million bytes that identify him to us?

169

These figures are very rough, but they help to illustrate what

cannot be done with today's hardware and software.

First steps Daunting though the task is, the business of sound and vision

input and output for computers is a major area for research in

computer applications today. Let's take a brief look at some of

the ways in which the research has met with success.

We have already seen how the computer can handle words,

even if it does not understand what they mean. It can check their

spelling, too, against a list of words it has been given. Though the

number of words in the English language is so massive, most of

us use only a small proportion of them. The computer can work

with a 'dictionary' containing a few thousand words, including

the sort of common words that appear in this chapter, and a

special selection of technical words used in the area in which it is

being applied, say, medical terms in a medical secretary's spelling

program. It can also be fed a list of proper nouns that will fre¬

quently come up - the names of clients, towns in the area in which

the firm using the program operates and so on. If a word in the

text being checked does not appear in the dictionary, the pro¬

gram will alert the operator, and he or she will then need to check

to see if it is a perfectly valid word that has not been included in

the dictionary, or if it is actually a misspelling.

In the chapter on programming we saw how the computer

uses certain words as commands; it understands these words and

acts on what they tell it to do. The number of commands the

computer will recognise is much smaller than the number of

words in our dictionaries above, and this type of small selection

of words has proved a good place to start teaching the computer

to understand the spoken word.

Computers have begun to learn to 'hear' by repeatedly

analysing the voice of one speaker, speaking a small selection of

command words. The sound is first converted to electrical signals

by a microphone. Then these analogue signals are converted into

the binary pattern which the computer can recognise. After a

number of repetitions they can distinguish the binary representa¬

tion of, say, 'RUN', from the binary representation of 'LIST', or

some other word in their vocabulary - and then act on the com¬

mand in the same way as if it had been entered into the computer

through a keyboard.

We saw earlier how this type of development is proving

particularly useful for the handicapped. Steady improvements

170

A visual representation of the

soundwaves for the words 'LIST' (left

above), and 'RUN' (right below), as

seen on an oscilloscope screen.

The patterns are clearly different

and can easily be 'digitised'.

If this kind of information is entered

into the computer it will need to be

able to match the received pattern

with one of a number of patterns

stored in its memory if it is to

recognise a word.

have meant that the more advanced machines can now under¬

stand virtually any speaker and that their vocabularies are

expanding slowly.

Teaching the computer to speak is not nearly so difficult. It

can say virtually anything if its memory contains a suitable

digital representation of what it is to say, and if it has a suitable

output through which to say it. Some systems concentrate on

teaching the computer the sounds of various syllables, which it

then combines into words (sometimes rather odd Dalek-sounding

words, admittedly); some teach it the entire word, or link it to a

recording of a human being saying the word.

The first speaking word processors, which tell the typist

what he or she has typed in (particularly useful for blind typists),

and the first 'spelling test' machines, which say a word and then

ask a child to enter its spelling, are already available.

Though the computer can't recognise Cary Grant yet, it is

having a little success in recognising more simple patterns or

objects. The first areas in which this type of vision recognition

are being tried include the use of'intelligent' machines, or robots,

to sort simple parts. The computer has to learn to distinguish, say,

a half inch rivet from a quarter inch bolt, whatever angle its

input camera views them at. Even that is not easy, but it has

taken some tentative steps in the right direction.

In yet other applications, we have found a more lateral way

of thinking around the problem of the computer's limitations.

Take that bar coding example we discussed in Chapter 1, for

instance. The computer is doing much the same job as a shop

assistant who picks up a tin of beans and thinks, 'Ah, yes, beans

171

went up lp this week'. Instead of recognising the picture of

beans on the tin, though, the computer recognises the bar code,

a convenient form of binary information which tells it that the

tin contains beans, just as the picture on the tin tells the human

assistant the same thing.

Practical
problems

The computer is not quite as clever as all that! However, there

are still plenty of jobs which don't demand these recognition

skills, which we might think the computer would be extremely

good at but for which it isn't yet being used.

Sometimes that's because we haven't yet got around to using

the computer, but often it is because practical problems, quite

unconnected with the business of getting the computer to process

the information, step in to make using the computer impractic¬

able. Let's look at some of these reasons why the microcomputer

hasn't yet taken over from us.

Taking over drudgery -

a termite in the works

Robots in Industry

Teaching a robot how to spray

vitreous enamel on to cooker

liners. Once the man has gone

through the motions the robot

can repeat them because it will

have mapped the movements in
its memory.

We need to go back to when we first talked about what the

microcomputer could do, in Chapter 1. We said that the com¬

puter's real forte was in taking over drudgery: doing boring,

routine jobs that human beings don't enjoy and are not par¬

ticularly good at. And that's true. But in fact, lots of jobs which

we think of as routine are not really that straightforward after all.

For instance, a legal publishing firm got itself computerised.

Part of its business was in sending heavy legal tomes to sub¬

scribing solicitors informing them of changes in the law. Part of

the computer's job was to make up a delivery note for each

lawyer, print an address label, and calculate the postage. All very

fine and large, except for one particular subscriber who lived

several hundred miles up the river Volta in central Africa. His

books had to wait up to a fortnight in a riverside trading post for

a boat going up-river. While they were there, they were subject

to the attentions of some law-loving termites.

Dear old Winnie, or whoever had been in the Post Room

before the computer, knew that this particular consignment had

to be wrapped in lead foil if it were to arrive uneaten. The postage

had to be increased by an appropriate amount. This had always

been done - until the computer came, and the customer got

several boxes of dust at £200 a time.

You might think that an office cleaner's job, say, was an

example of pure drudgery. But, in fact, it requires very complex

skills in recognising what is rubbish and what isn't. The human

172

Robots in Industry

Top - Most robots are used for

predictable, well-def ined jobs in

unpleasant conditions.

Below - Visual recognition robots

are still at a relatively primitive

stage of development. This is a

laboratory scale machine designed

to recognise the shape of a

particular metal part and pick it

up, no matter what position it is

in. Parts are fed down the chute

(left), on to an illuminated table.

A camera, (top), looks at the part

and feeds information into the

computer, which recognises its

shape and position and turns the

table round so that an arm can

come down and pick the piece up.

174

cleaner might see, say, a pocket calculator in the waste bin, fish it

out, check to make sure it still works, and put it carefully back

on the desk. The robot would scoop it up without a second

thought, and woe betide its owner on Monday morning!

On the other hand, no-one has the mental energy to do a job

that has no drudgery in it at all. When computer-aided design

was first introduced to the aircraft industry a few years ago, the

first — unlooked for - result was a strike among draftsmen at a

British design consultancy who were using the equipment to

design a new wing for some American military transport air¬

craft. Their complaint was just this: in the past they would be

set a problem - design the outer aileron, say. They would sit

down, have a think, wander round the office, chat to their friends,

doodle upside down on the corners of their drawing boards, do a

few sums in the train, have another think, and in three months

feel their way to a good design out of all the millions of no-good

possibilities. The computer put a stop to this pleasant process.

As soon as they sketched in a possible solution, it would straighten

up all the lines, dash in rows of rivets, go off to the master data¬

base, look up the loads this bit was supposed to bear and how

heavy it could be, do the stress analysis in a few milliseconds and

come back with the terse decision, 'No good. Try again.' The

miserable designer's brain wasn't proposing to produce another

drop of nectar for three months - the last one was only five hours

ago! So the designers went on strike. They couldn't stand not

having the spells of drudgery - what might be considered

'reflection time' in between bouts of creativity.

Fitting the
computer in

Offices and factories are complex organisms, with many different

processes and procedures. Perhaps the computer could, in theory,

take over the whole operation; it is a very different matter to get

the computer to take over a small part of the operation and to fit

its procedures in with the procedures of the human beings it has

to work with.

The present generation of office computers do not blend well

with traditional paper procedures. Data has to be copied from

invoices and typed into the electronic stock control and account¬

ing programs; it has to be copied back again into letters of

apology to creditors, and letters of menace to debtors.

To make ultimate sense of the technology, letters and docu¬

ments of all sorts that come into a firm ought to be held on

electronic file, in a form the computer can make immediate use

175

The 'paper-driven' office is friendly,

comprehendable and in some ways

inefficient. But most of this

information is on scraps of paper

which come from a large number of

different sources. Could it ever be

held in a computer's data bank? Is

the paperless office (see here -

below - at Citibank New York) really

going to take its place overnight ?

Information here is stored and

retrieved electronically, but it is

only certain kinds of information

that can easily be transmitted in this

way - mainly that generated within

the organisation and within the

system. Unless all offices have

compatible systems, the piece of

paper, read by the human eye, will

still keep its importance because of

its flexibility.

of. At present they can't be, unless they are copy typed onto the

machine, which is ridiculous. There is equipment which is able

to read text into the computer, but it isn't yet available at under

£50,000.
When a customer writes and says 'Please send me three dozen

of your "Honolulu" style shorts and your Winter Catalogue when

it's ready' the system ought automatically to raise a delivery note,

an invoice, adjust the books - and, in six months time, send off a

catalogue. Sadly, most software falls short of this and a clerk is

still needed to finish off what the computer can't manage.

In factories there are similar limitations. In those designed to

make things by traditional methods the advent of the computer

has produced only little change - a computer-controlled machine

here and there - maybe the occasional robot doing a nasty job,

but no systematic exploitation of the possibilities. Yet in some

places in the world - especially Japan - there are automatic fac¬

tories (there was one in Britain until the recession forced it to

close down). Goods come in, are handled, machined and assem¬

bled by flexible machines, each controlled by its local computer

and linked to its fellow machines and to a central computer. Often

the products have been re-designed in such a way that the new

technology can handle them more easily.

In such factories the incoming orders, the checking of the

progress of the manufacture of each item, the warehousing and

the dispatch of the goods and of the attendant paperwork is

integrated by a network of computers. Such factories are able to

respond to the need for new products because the equipment is

'under software control'. A new product, designed with

computer-aided design equipment linked directly with the

computer-aided manufacturing process, can be 'fitted in' with

ease. The use of such techniques by some forward-looking com¬

panies gives them many advantages over their competitors: they

can respond to orders more quickly; products which don't sell

can be removed and replaced without having to abandon

'dedicated' production lines; quality is on the whole higher and

the labour content is lower, making the product cheaper.

The brewing industry is one of the best existing examples of

automation in Britain, largely because breweries were being re¬

designed and rebuilt to mass-produce beer about 10 years ago.

They are therefore laid out for automation. In a brewery, large

tanks of liquids are mixed, heated, refrigerated and generally

pumped about to produce the foaming delights of the saloon bar.

Essentially, the machines only have to sense the levels and tem¬

peratures of liquid in various tanks. They have to open valves.

177

Flexible manufacturing

Below left: Computer-aided design

of the parts required to press out

vehicle body panels.

Below right: A computer-controlled

template cutting machine.

Bottom: Robots working co¬

operatively, welding a truck.

Automated production undoubtedly

leads to increased productivity but it

also requires new skills, with the

loss of many traditional semi-skilled

craft jobs.

and turn pumps on and off. The problems are basically simple.

So, in some breweries, all the master brewer has to do is to go

into work, and type on the keyboard of his microcomputer:

MAKE 10000 GALLONS OF OLD CATASTROPHE

In less well organised industries, the small computer has made

much less headway.

The point is that unless the whole thing is thought through,

the use of computers in industry - as in the office - is bound to

be piecemeal and messy. We are, with the exception of those few

(largely foreign) factories, or those very few completely elec¬

tronic office systems, still in the early days of the new technology.

And when it comes, there is a price to pay, of course - many

skilled and semi-skilled craftsmen and clerks in these highly

automated industries have lost their jobs. The jobs which remain

are the highly skilled ones, those involving judgment or human

contact (the designers, the technicians, the salesmen), the un¬

skilled ones (the floor sweepers) and those doing jobs which are

still too difficult or too expensive to mimic with a robot (crane

drivers, for instance).

Linking
computers
together

We have already looked briefly (on page 28) at the way in which

computers first stopped being isolated machines, locked away

in their air-conditioned temples, being ministered to by the data

processing high priests and launched out to join their users in the

world outside.

Many of the timesharing systems which developed from

early mainframe computing depended upon the use of several

terminals linked to one central computer. A terminal is very

much like the video display/keyboard unit that acts as an

input/output medium for many microcomputers: it is a machine

which provides input and output devices, and may contain a

microprocessor to give it some 'intelligence', but which is depen¬

dent upon a larger processor for its computing power. The great

advantage is that the terminal can be located wherever its user

needs to be, while the main computer might be miles away from

it. Many terminals today are portable, too.

What connects the terminal to the computer, then? It

generally uses either the telephone system, or a private line

which works in much the same way. The private line is more

reliable in operation, but the telephone system is more flexible:

179

you can phone many computers from any convenient phone,

link the terminal to the phone handset with a device called an

acoustic coupler, and - if you know the machine's passwords -

compute away.

The public
computer

Not content with merely providing the lines through which com¬

puters and terminals can talk to each other, British Telecom has

now gone one better and provided a computer which we can talk

to. That's what Prestel is - a large central computer with a large

amount of memory space, which British Telecom 'leases' out to

private information providers. Any of us with a Prestel terminal,

or a microcomputer with a Prestel adaptor, can dial the central

computer and obtain the information stored on it.

Computers used as stores for information in this way are

known as databanks, and this type of system, which uses the

telephone network as a framework for providing databank in¬

formation, is known as viewdata. A similar system, 'teletext',

depends upon broadcast information, which is received on

adapted television sets: Ceefax and Oracle are the British exam¬

ples. These systems were developed in Britain and are being

exploited all over the developed world.

Prestel, British Telecom's huge

but as yet underused data bank.

Is this the way we'll get more factual

information in future or will we

prefer traditional methods for

shopping around?

P E TEL 65097* Op
OFFICE ACCOIHIOOftT I ON - North Strickley

BRIPIOALE ROAD
Floor arts: 1050 sq metres.1st floor

sub-divided into 4 suites

Suits size: A.414 m2 C.115 m2
•328 m2 0.193 m2

Location: Sited between a 2-storey
Office block 6 supermarket
in the centre of rapidly
growing north area of town.
Overlooks the High Street.

contact Cubham E Creui
__ 24, Col ten Lane. 0123 4567S

pras* 1 for other offices by sixe
2 offices in other areas

180

Needless to say, the Prestel computer is just the same as all the

other computers we have talked about, and it has to be program¬

med in the same sort of way to enable us to find our way around

its stores of information. This is done using a kind of 'menu-

driven' approach. (A menu-driven program is one which pres¬

ents you with choices on the screen. Pushing the appropriate but¬

ton then leads to further choices, progressively narrowing down

the search until you find the information you're looking for.)

Microcomputers
and viewdata

Microcomputers have the capability to retrieve and display in¬

formation stored in these public databanks. Some have a teletext

or viewdata card that plugs into one of the input/output ports.

Microcomputers designed in Europe are now being designed

from the start to be able to link with Prestel or teletext.

One problem in Britain is the need to get British Telecom

approval before any device can be plugged into the telephone

system and this limits the use of Prestel at the moment. However,

some systems are designed around teletext modules, i.e. devices

for receiving the broadcast information from the BBC or ITV and

come in either kit or ready built form. To appreciate and use

teletext or viewdata to the full, however, colour must be avail¬

able, and this rules out many American or Japanese systems at

the moment.

One of the more exciting developments is in the area of

'telesoftware', whereby the computer can receive programs via

teletext or viewdata. The appropriate page can be dialled up, and

then the program can be loaded directly into the computer.

Microcomputer
networks

As well as using these databank facilities, many microcomputer

users will be interested in communicating with other users:

people with technical, business or hobby interests in common,

for instance. The same kinds of system can be adapted to serve

this purpose.

In America, private organisations are already offering data

network facilities. Anybody with the appropriate equipment

that allows the computer to link into the phone system - an

acoustic coupler or a permanent connection of some kind - can

join the network by enrolling once a year, and then pay a fee -

around £1 an hour - to use the network. You can communicate

with other microcomputer users, interrogate a central database,

181

or even gain access to programs held centrally. Most of the

popular computer systems are catered for. The quarterly tele¬

phone bill is usually the most expensive item!

Cutting out the cost of phone calls means investing in private

lines, a desirable alternative if you plan to communicate regu¬

larly with a small number of other local machines. There are now

a number of these 'networks', one of the best known being the

'Cambridge Ring'. This was developed by Cambridge University,

to allow all their computers scattered around the town to talk to

one another. The reason for this was simple. One computer may

have some information that another one would find useful.

Instead of duplicating the programming, or even shipping data

around on vulnerable disc or tape, it was easier to link them all

together with a few wires. The Cambridge Ring was originally

designed for minicomputers and mainframes, although micro¬

computers can now link in with it.

Recent developments have produced cheap 'ring' circuitry

that costs around £50 per computer. Although it's only available

on one or two microcomputers at the moment, it is designed to be

flexible enough so that eventually many different makes can be

interconnected. Up to 255 individual computers can be linked

together, and even share the same expensive disc drives and

A Japanese 'network' of computer

terminals for the small shopkeeper.

A central computer takes in

yesterday's electronically recorded

sales details from each shop and

automatically organises the

deliveries of new stock and does

the bookkeeping. But is it

sapping initiative?

182

Computer

networks

in buiness

The age of instant banking may be

approaching. Computer networks

within and between the banks could

easily be expanded to reach the

counter clerk and to the customer

himself. Here the customer

completes a transaction in under a

minute by entering details on a

simple keyboard, doing away with

the need to write a cheque. The same

system can even be extended into

shops so that customers can pay

their bills by debiting their bank

accounts on the spot.

printers. This exciting development will probably lead to many

groups of people in a locality or a building connecting their com¬

puters together and creating local networks. Schools are a prime

example.

The network idea is particularly useful in business, and on a

large scale it is helping to provide the basis of a totally automated

information handling system. How would it work?

Take, for example, the office of a small magazine. It has the

following staff: an editor, a production sub-editor, two reporters,

an editorial secretary, an advertising manager, two salesmen and

an advertising secretary. They could all have microcomputers on

their desks, consisting of a screen, a keyboard and a processor

and memory linked to a central hard disc and a high-speed

printer. The editorial and advertising departments work mostly

apart, but occasionally have to collaborate. Consider the editorial

department first.

183

184

Are the Japanese jumping a

technology ?

There are few typewriters in

Japanese offices - the need for many

thousands of written characters,

each on a separate piece of type,

made typing slow and arduous.

Traditionally, most office work in

Japan is handwritten or done over

the 'phone.

Top right: Recent advances in

microelectronics have led almost

overnight to sophisticated Japanese

word processors. This touch

keyboard enables text characters to

be very quickly processed on the

screen, then printed out on a very

fast electronic printer.

Bottom: Japan now boasts one of the

most modern newspaper production

offices in the world. The paper is

written, edited, designed, typeset

and printed using computer

technology throughout.

The editor and reporters write articles on their machines,

which are stored on the hard disc. Articles are sent in by outside

contributors, and are copy-typed, or read in by an optical

character reader, one of those expensive devices which can

transform text on paper into computer input, and also kept on

the disc. When an issue is being made up, the editor puts a list of

the articles he wants included on the disc, and the production

editor uses that list to tell him what articles to pull into his com¬

puter for copy-editing. This involves checking spelling: he'll

probably use a spelling correction program to help. It involves

checking punctuation, and there will be a program to help with

that too. When an article is satisfactory, he will put a header on it

specifying what typeface it's to be set in, and send it down the

telephone line to the printers.

Meanwhile, the editorial secretary has to pay the contribu¬

tors. She has a program that looks at the finished articles, counts

the number of words in each, looks up the contributor's file to

see how much the editor has agreed to pay each writer, and

calculates their fee. It can print out cheques ready for signature.

It updates this file, so that later on it will be easy to see who wrote

what, when and for how much.

Much of the editor's time is taken up in correspondence with

readers and contributors, and he'll use his microcomputer to

draft letters which his secretary will create - possibly incor¬

porating standard phrases, or using complete standard letters in

some cases - and get printed out. The letters will be filed

electronically on the hard disc.

The advertising department will be able to use their com¬

puters to keep track of who has ordered what pages in what

issue. They will note the agreed discounts, and at the end of the

month a program will calculate what each advertiser owes and

send out invoices. The computer will keep track of statistics on

booking and revenues.

Sometimes an advertiser will ask to advertise in any issue

which has an editorial feature mentioning his product. The

advertising staff will search the articles on file to see if any

include the name of his product and, if any do, to put a note in the

file asking for notification when that article is going to be used.

Ideally, this office will have no paper in it at all. It will use

quite a lot of expensive hardware, but the saving in time and

efficiency will more than pay for it. The people in the office will

use standard software packages for word processing and data¬

base management - controlling files on the disc - but they may

even write a lot of programs themselves, too.

185

The Portable office.

All you need is a 'phone. Plug the

handset into the rubber cups at the

back of this portable terminal and

you can contact the computer in

your office from home or from a

hotel room anywhere in the world.

Stored text - memos or messages

can be transmitted and received

automatically. Journalists on some

American newspapers send in their

copy in this way.

In some ways, a magazine is ideally suited to the computer age.

Its staff do routine things to a mass of text. The final step might

be to do away with the printed magazine completely, and that

could happen, no doubt, in a few years. The material could be

distributed by wire to people's homes, and displayed on their

television screens, or printed out on their (by now) cheap

printers and paid for in their telephone bills.

There are many other businesses that could go the same way.

One effect will be to cut down the numbers of supporting staff.

In principle - it will doubtless take some time to realise - such an

organisation will not need an elaborate accounts department. It

won't need lots of typists producing and filing invoices. The

people who work there will deal directly with the creative parts

of their jobs, leaving the computers to do the boring bits. That,

in turn, will cut down the numbers of managers.

Several such units can be connected together via larger com¬

puters. A big company might, in five years' time, consist of a

number of small, energetic profit centres which do their business

on a local network, while feeding selected information into the

firm's central minicomputer. The magazine, for instance, might

be part of a larger group. Once a month, perhaps, the advertising

department could run a program which totals the number of

pages sold, the total amount of money taken and send it to a file

for the attention of the managing director, where it's combined

with similar results from other enterprises.

186

So, what would the visitor notice in such an office? Firstly,

the keyboard and screen on every desk. Secondly, the relative

tidyness of the desks; there would be very little paper lying

about. Thirdly, the absence of filing cabinets; all the unit's files

will be kept on the hard disc unit, which lives in a desk drawer.

Fourthly, someone having a nervous breakdown in the corner

because it's all too complicated. . . .

The most noticeable thing about the office might well be that

it isn't where you might expect it to be. Once you handle infor¬

mation electronically, there is much less need for people to be

physically close to each other. The magazine's staff might want

to be together, because a lot of their work consists in sharing

their experience with each other but there is no real need for

them to be in the same building as their managers, or as the other

magazines of the same group. Some of the staff of one magazine

might prefer to work at home in Chiswick, others in Wiltshire.

Instead of mail, the staff would use the telephone network to

send information to each other. Their contributors would be

encouraged to write their articles on their machines at home, and

to send them in by telephone - possibly by satellite, too, if they

live abroad.

If humans want to work this way it is now, or will soon be,

technically, quite possible. The limits to the speed of change will

largely be due to human reactions to change. Will we allow
ourselves to work in this way?

The cheap, home facsimile copier

linked to the telephone (this one is

French). Could it make electronic

mail a real possibility? Is this how
we might one day get our newspapers

and letters?

187

Using Prestel As we^ as linking their own computers together, business people

in business can a^so use the Prestel computer and the other kinds of public
network we've talked about.

As one example, the contributors to the imaginary magazine

we described above might well send in their offerings through

Prestel. They would connect their computers to the telephone

line, dial up the Prestel number, 'access' the magazine's message

page, and write onto it the article they want to submit. Later on,

the magazine's computer would make a routine check of the

message page, find something there and load it into its own files

and put a note in the editor's message file.

There are also going to be wider opportunities for selling

information through Prestel. For instance, you might be thinking

of making a journey and have a program in your computer at

home to check British Rail's timetables to work out a route with

times of trains and fares (in other words, a variation on the 'route¬

finding' program we wrote in Chapter 4). Perhaps, as is more

likely, you wouldn't want to write this program yourself, so you

would 'rent' it for a day from some software supplier, paying a

small fee which is automatically added to your telephone bill.

You might want to buy or sell something - let's say, a second¬

hand car. Businesses that today publish weekly lists of advertise¬

ments in newspapers could start to do the same thing on their

computers. An advertiser would use his computer to put directly

onto his disc what it is he has to sell. Just like an advertiser in

'Exchange and Mart', for instance, he'd have to learn certain

conventions which people use. One route down his program

'menu' might run:

SECTION = CARS

TYPE = FORD

MODEL = CONSUL

LITRES = 2

YEAR = 1977

MILEAGE = 500

PRICE = 3000

TEL NO. 221 5000

He would probably be charged a fee for putting his advertise¬

ment up and a further daily rate until he took it out.

Enquirers would use their machines in much the same way.

They'd send a message like this:

188

MAKE-FORD

LITRES<3

PRICE<2000

MILEAGE< 10000

and get back every car that matches this description.

The great advantage of a networked system like this is that it

is possible for buyers and sellers to contact each other directly -

not only by receiving a phone number, for instance, but by

leaving messages on the system itself. They could even pay for

the goods through the computer, giving their credit card number!

Beyond seeing that it is all possible, it is hard for us now to

foresee how this business will develop. The whims and pre¬

ferences of users will be so important that they will dictate how

growth happens. The system offers enormous flexibility, but it is

up to its users to determine which of the possible paths of

development are taken.

The future? In future the speed of change may not be governed so much by

the limits of technology as by our reaction to it. If humans want

to live and work in the ways we have described it is now, or soon

will be, technically quite possible. The automatic factory already

exists in Japan. The highly automated magazine publishing house

already exists, in effect, in America.

But it is sobering to remember that the experimental British

automatic factory mentioned above was closed down recently

because it seemed a low priority compared with other activities

in the recession. It is also sobering to look at the history of

attempts to introduce new technology - much of it computerised

- in the printing and publishing industries in Britain.

However, it is quite possible to look forward to a time when

all these amazing labour-saving worlds co-exist. And jobs? What

will most people then do when the craftsmen, the clerks, the

middle managers become unnecessary? Will we create a society

in which to work is not seen as an essential part of life, essential

to one's self-respect? or will we create new jobs in the 'caring'

industries - health, education, welfare? Will new kinds of per¬

sonal services - hitherto undreamed of - be created in a luxurious

Brave New World ? Will the working day and the working week

become shorter? Or will we create a divided society where some

have work and some do not?

189

Window on the world and

window on the home.

An experimental two-way

computer-managed community

television system. This Japanese lady

can call up a range of services on her

television set and take part in

community television programmes

and adult education classes using

her own television camera and

microphone. The keypad helps her

to select channels, and videotext-

type information, and makes it

possible for her to vote on local

issues at the press of a button.

It is possible - and indeed fascinating - to speculate about what

the future may bring. We really can't know - although one

thing is certain: there will be change and there will be challenge.

Choices will have to be made and decisions are best made against

a background of knowledge. If this technology is capable of

changing our lives then it is best that we understand it so that we

can help it along if it seems good, and challenge it if it seems bad.

We hope that this book - and the whole BBC Computer Literacy

Project - has helped to provide a little of that understanding.

190

Future Past - future perfect ? This romanticised view of the future appeared

in the 1969 catalogue of Nieman-Marcus the up-market American

superstore. For Si0,000 the woman who has everything could buy a

computer for her kitchen to help with household accounts and 'to find that

little recipe'. Today the store doesn't sell computers because 'everyone has

one'. Since 1969 there has been a revolution in hardware and hundreds of

thousands of microcomputers have been sold. Yet a similar revolution in

software is still to come.

191

Glossary

Accumulator

Acoustic coupler

Address

ALGOL

Algorithm

Alphanumeric

Analogue

Up till now the world of computers has been dominated by

specialists who revel in using jargon. Whereas much jargon is

unnecessary and makes communication difficult between those

in the know and those outside, there are many technical terms

which are useful and important; some, indeed, are coming into

common use as the effects of computers spread. This glossary

should help to explain the most widely used terms.

A place in the computer where one number can temporarily be

brought (for example from a part of the memory) and where,

amongst other things, another number can be added to it, sub¬

tracted from it or compared with it.

A gadget which enables audible tones, say from a telephone, to

be turned into the digital form which the computer can under¬

stand (and vice-versa).

In the computer, information in the form of numbers is moved

around from place to place. Each place has an 'address' which is

itself a number. In a way it is like the number of a house in

a street.

One of a number of high level languages (q.v.) - often used by

mathematicians.

Although we have avoided the use of this word in the book, it

means the solution to a problem - say, on paper - which could

then lead to the series of instructions which make up a computer

program. However, the term does not necessarily have anything

to do with computing.

A mixture of characters which can be numbers or letters or

symbols like '@' or any combination. The typewriter or com¬

puter keyboard is an 'alphanumeric' keyboard.

A quantity (like temperature or time) which is continuously

varying - as opposed to digital (q v.). Most things in the natural

world are analogue. When we measure them and give them a

numerical value, we digitise them.

192

A/D converter -

Analogue to digital

converter

Applications program

or applications software)

Arithmetic & logic unit

(ALU)

Array

Artificial intelligence

ASCII

Assembly language

('assembler')

Author language

Backing storage

(See under CONVERTER.)

A computer program designed for a particular outside purpose -

it might be for a business application or a game or be an educa¬

tional program. As opposed to systems software (see Software).

An area in the central processor of the computer where arith¬

metical and logical processes (such as comparing two numbers)

take place.

In effect an orderly list or a table of numbers or words (data)

where every position is labelled and can be handled separately

or in a sequence by the computer.

The ability of a computer (or computer-controlled machine) to

perform a task which, if a human being were to perform the same

task, would be said to require 'intelligence'. This begs the

question, of course of what is meant by 'intelligence'. Often the

computer will learn from experience and improve its perform¬

ance of a particular task.

'American Standard Code for Information Interchange'. The

internationally accepted code which represents numbers, letters

and symbols with unique binary code values which the computer

can then deal with.

A low level language which uses mnemonics rather than ordinary

words to give instructions to the computer. These mnemonics

translate directly into the binary instructions which the com¬

puter understands in a much more economical way than does a

high level language in that they take up less memory space. But

it is less approachable for beginners.

A 'very high level' language program which enables those not

skilled in programming in, say, BASIC, to write applications

programs easily because the author language (itself written in,

say, BASIC) requires little more than the writing of instructions

in ordinary English.

Any outside storage medium (usually magnetic tape or disc)

which supports and can be linked to the main memory in the

computer. When the power is off, information in the backing

storage is not lost. The capacity of a backing storage memory is

much greater than the computer's internal working memory.

Bar code

BASIC

Baud rate

Binary

Bit

Branch

Bug

Bus

Byte

CAD

CAL

Cassette tape

CEEFAX

Central processing unit

A pattern of printed lines on an object identifying it and contain¬

ing information about it which can be read into the computer by

scanning it with a light pen. Common now on grocery packaging.

The most popular 'high level language' for microcomputers.

Stands for 'Beginners All-purpose Symbolic Instruction Code'.

Chapter 4 is devoted to it.

This is a measure of the number of bits per second travelling from

one part of a computer system (e.g. a cassette filing system) to

another, or between computers.

A way of counting using only two alternative values - 0 or 1,

'on' or 'off', 'black' or 'white'. Deep inside, computers like

binary - indeed they can understand nothing else.

A binary digit - a '0' or a '1' (see binary).

A part of a computer program where a choice is made between

alternative routes - the 'intelligence factor' in computing.

A defect or mistake in a computer program.

A set of electrical pathways or connectors inside a computer.

'By eight'. Usually means a group of eight bits. One byte contains

enough information to represent one ASCII character.

Stands for 'computer aided design'.

Stands for 'computer aided learning'.

The 'cheap & cheerful' way of storing programs and data for a

microcomputer, using a domestic tape recorder (see backing

storage).

The BBC's broadcast screen information service. Part of the

television signal is used to send data which can then be displayed

on the screen of a suitable television set. A form of viewdata

(q.v.).

The control 'brain' of the computer where all parts of the com¬

puter system are linked together and where the calculations and

manipulation of data take place.

Characters

Chip

COBOL

Command

Compatible

Compiler

Computer and computing

Converter

analogue to digital

(or vice-versa)

Crash

Cursor

Daisy wheel printer

Data

The all-purpose expression for numerals, letters & symbols

which a computer can print or display on a screen.

A single device containing many transistors and other com¬

ponents formed on the surface of a piece of silicon. When pack¬

aged up, looks like a centipede because of its many metal legs.

A high level language usually used for business applications.

A direct instruction to the computer which it carries out at once.

Two computers are said to be compatible if a program written on

one will run on the other without modification.

A program inside the computer which converts a complete

program - like an applications program - written in a high level

language into the machine code version which the computer

needs to be able to run it.

The whole of this book is about the meaning of these two words.

In a nutshell the computer is a device which can process in¬

formation according to instructions given to it by human beings

and in this way perform useful or entertaining tasks. Computing

is the art or science of getting the computer to do what you want.

A device for converting analogue information (coming from the

real world) in the form of a continuously varying electrical

voltage from some kind of electrical sensor into the digital form

which the computer can cope with - or the reverse.

A computer is said to 'crash' when a program which is running

cannot be completed and cannot be restarted.

Some way of marking the screen with the position at which the

next character typed in at the keyboard will appear.

A printer which makes use of a plastic disc around the edge of

which is a set of print characters. The wheel rotates at speed until

the required character is brought before a hammer which strikes

it against a ribbon. One wheel can easily be replaced with another

with a different typeface.

Loosely, means 'information' which a computer program can deal

with. Data can be in the form of numbers or characters.

195

Database

De-bugging

Dialect

Digital

Disc

or 'floppy' disc

Dot matrix printer

EPROM

Expert system

File

Firmware

Floppy disc

Flow chart

FORTRAN

A self-important sounding word meaning an organised collection

of files of information to which the computer has access. If many

people have access to it through different terminals it might then

qualify to be called a data bank.

The business of testing a program and then changing it to get rid

of 'bugs' or faults.

A version of a particular computer language e.g. PET BASIC,

BBC BASIC, RML BASIC - all are different dialects of BASIC with

some things in common, others not.

To do with numbers, c.f. 'Analogue'.

A flat magnetic disc on which programs and data may be stored

and retrieved quickly - far faster than cassette tape but more

expensive (sometimes 'disk').

A printer using a series of electrically 'hammered' moving pins

to create characters composed of a pattern of dots.

Stands for erasable, programmable read-only memory - a chip

which can be fed with a program and which will hold it until it is

erased (usually by exposing the surface of the chip to ultraviolet

light). After that it can be re-programmed. (See PROM, ROM).

(See Artificial Intelligence.) Crudely, expert systems are able to

make decisions in areas normally dependent on professional

judgement - e.g. medicine, law, oil prospecting.

An organised collection of information - e.g. computer programs.

A program permanently held in a 'read only memory' chip in a

computer. The term usually refers to the programs which manage

the internal operations of the computer rather than applications

programs, though these, too, could be 'blown' into firmware.

(See disc.)

A diagram on paper showing the sequence of events and choices

which need to be made in the solution of a problem - usually

(though not exclusively) relating to a computer program.

A high level language mainly for scientific and mathematical use.

196

Garbage

Graphics

Handshaking

Hardware

Hard copy

Hexadecimal or 'HEX'

High level language

Integrated circuit (IC)

Interactive

Input

Instruction

Interface

Meaningless or unwanted data coming from the computer and

arising from a number of causes. This has given rise to the maxim

'Garbage in, garbage out' and the acronym 'GIGO'.

The overall term meaning the appearance of pictures or dia¬

grams on the screen as opposed to letters and numbers.

A 'dialogue' between two computers or a computer and a

'peripheral device' - like a printer - which establishes that a

message is passed between them to their mutual satisfaction.

The physical bits and pieces of the computer - as opposed to the

'software' or the programs.

Tangible and permanent output from a computer, on paper.

An arcane way of counting based not on base 2 (binary) or on

base 10 (decimal) but on base 16. Understood by people who

program in low level languages. One 'byte' (q.v.) can be repres¬

ented by two hexadecimal symbols, hence its significance.

A programming language where the programmer uses instruc¬

tions which are close to his ordinary familiar language rather

than machine code. In effect, the higher the 'level' of the langu¬

age the nearer.it is to ordinary language and the easier it is for the

uninitiated to understand.

The circuits combined together on the surface of a silicon chip.

IC is often synonymous with 'chip'.

A way of operating where the user is in direct and continual

two way communication with the computer, maybe answering

its questions and receiving its reactions to the answers.

The route whereby information gets into the computer or the

putting in of information by the operator (say from a keyboard).

A computer program consists of a series of instructions, often

used interchangably (though perhaps wrongly) with 'commands'.

The boundary between two parts of a computer system. Often the

boundary consists of a piece of electronic circuitry. Even more

inelegant, as a verb, meaning to make one part of a computer

system run smoothly with another.

197

Interpreter

Keyboard

Keywords

Kilo

Language

LCD

LED

Location

Low level language

Machine code

Memory

A program living inside the computer which translates the key¬

words in a high level language program, line by line, as it runs

into a more compact form which the processor can cope with.

One form of input device for a computer. Keyboards are usually

'Alphanumeric' (q.v.) but also contain special keys which per¬

form particular functions on the computer.

Words in the vocabulary of a high level language which have a

special meaning to the computer.

A prefix meaning a thousand - e.g. kilobyte - a thousand 'bytes'.

A prefix meaning approximately a thousand (actually it is 2 to

the power of 10, which is 1024).

A computer 'language' can hardly be considered as the same as,

say, a language like French or German but it is an organised way

of communicating with a computer using precisely defined

instructions.

Liquid crystal display. Most pocket calculators and digital

watches have these. The characters usually appear as black

against a light background. The effect is a chemical one, which

uses up very little electrical power.

Light emitting diode. An electronic component which emits light

when excited by an electric current.

A place in the computer's memory where information is to be

stored (see address).

(See machine code.)

The pattern of 'Os' and 'Is' which the computer actually under¬

stands. It is the lowest level of language for a programmer to

work in and all high level programs are concerted into machine

code instructions automatically when they run (though not in

the most efficient way, hence the need for programming directly

in a low level language, since programs written directly in a low

level language run faster than those in high level language.)

A computer's memory is a device or series of devices capable of

storing information temporarily or permanently in the form of

patterns of binary 'Is' and 'Os'. The computer then 'reads'

198

Menu-driven programs

information from the memory or in some cases also 'writes'

information into it when it operates.

1 Internal Memory - this usually consists of silicon chips within

the body of the computer. Some of these memory chips will con¬

tain information which is permanently held there and which can

only be 'read' and is not erased when the computer is switched

off ('non-volatile', 'read-only memory'). Other chips represent

the working memory of the computer where information can be

stored temporarily when a program is running and which is lost

when the computer is switched off ('volatile', 'random access

memory'). The computer's capacity at any one time for handling

information is limited. Consequently there is a need to have a

'back-up' memory outside the computer.

2 External Memory. This usually consists of a magnetic tape or

disc on which binary information is stored and 'called up' by the

computer as required. The information is not lost when the

computer is switched off.

Programs which present the operator with a list of choices at any

particular time and these are displayed on the screen for him to

choose from. Each choice leads down a different branch of the

program.

Micro Has two meanings - (i) 'small' - as in 'microcomputer' - and (ii)

a millionth of something - e.g. microsecond, a millionth of a

second.

Microcomputer A small computer system built round a microprocessor but hav¬

ing all the necessary bits and pieces (peripherals and memory) to

link with the outside world and store information.

Microelectronics The use of electrical devices in which many different components

are formed together (integrated) into microscopically small

circuits on the surface of single 'chips' (usually of silicon).

Microprocessor Sometimes used as a synonym for microcomputer but, more

correctly, a microprocessor is the central chip containing the

control unit for the computer.

Minicomputer A medium sized computer of the kind which might be used by a

medium sized company to keep its records, work out its payroll,

stock control, etc. Midway between a 'micro' and a 'mainframe'

computer.

199

Network

Numeric

Operating systems

Output

Paddle

Parallel

Pascal

Package

PCB

(printed circuit board)

Peripherals

Port

Portability

Prestel

Processor

A system where a number of computers, terminals and other

components (like printers and disc drives) can be linked together

electronically - sometimes over some distance.

To do with numbers.

The software program sitting permanently inside the computer

which supervises the running of applications programs and

controls the operations of the various input and output devices

like the video display unit, keyboard, etc.

Information which a computer sends out to a screen or a printer

or to a backing memory store.

Another name for a joystick control - e.g. for a T.V. game.

When electrical patterns of bits travel simultaneously along

parallel wires they are said to be a 'parallel' bit stream.

A high level language preferred by many to BASIC for general

programming work.

A word used to describe a computer program or collection of

programs written to be useful to a number of people (as opposed

to one written and tailored for a specific purpose for one client).

The plastic board into which the computer's various electronic

components are soldered. These are linked by thin inter¬

connecting wires printed on its surfaces.

Bits and pieces of a computer system which connect in different

ways with the central processor and memory and which form its

input and output devices. Peripherals include printers, disc

drives, joy sticks, graphics tablets, light pens, etc.

A place where electrical connection can be made with the

central processor in the computer.

Programs are portable if they run on different computer systems.

The name given by British Telecom to the first public viewdata

service (q.v.) using the public telephone system.

(See central processing unit.)

Program A series of instructions which the computer carries out in se¬

quence. As a verb, to write these instructions.

PROM (Programmable

Read Only Memory)

RAM

(Random Access Memory)

Real time

ROM

(Read Only Memory)

Robot

Scanning

Serial

Silicon

A chip which can be programmed by the user. Once programmed,

its contents are 'non-volatile'. (See also ROM, EPROM.)

Memory into which information can be put (written) and from

which it can instantly be copied (read) no matter where it is in the

memory. RAM is the 'working memory' of the computer into

which applications programs can be loaded from outside and

then run. Sometimes called a read/write memory.

A computer system is said to be operating in 'real time' if the

processing of information fed in takes place virtually at once.

A memory circuit in which the information stored in 'built into'

the chip when it is made and which cannot subsequently be

changed by the user. Information can be copied from ROM but

it cannot be written there - hence the name read only memory.

Another name for read only memory is 'firmware' since this

implies software which is permanent or firmly in place, on a chip.

A computer-controlled device which is fitted with sensors and

activating mechanisms. The sensors receive information about

the surrounding environment, send it to a computer which then

decides on the basis of its program how the mechanical parts

should respond - e.g. to pick something up or to move about.

Some robots can be programmed to improve their performance as

a result of their experience, (see artificial intelligence).

This word usually refers to the very rapid examination of every

item in a computer's 'list' of data to see if some condition is met.

When electrical patterns of bits travel one after the other down

a wire in a computer they are said to be a 'serial' bit stream - as

opposed to a 'parallel' bit stream (q.v.).

The chemical element which is used as the basis for the in¬

creasingly more complex integrated electronic circuits which

recently have been responsible for the 'microelectronics revolu¬

tion'. Silicon is present in sand (which is silicon dioxide). It has

odd electrical properties, sometimes conducting electricity and

sometimes not, depending, for example, on what other sub¬

stances are mixed with it in minute quantities.

201

Software

Statement

Storage

String

Systems analyst

Tape

Telesoftware

Teletext

The general term which refers to all computer programs which

can be run on computer hardware. A distinction can be made

between the programs responsible for the running of the com¬

puter - its internal 'housekeeping' and operating systems and

so on - and 'applications programs', (q.v.j. Ultimately, all soft¬

ware consists of patterns of binary information which give the

computer its marching orders.

Another name for an instruction used as part of a computer

program.

Another word for memory - a place where information can be

kept in a form which is accessible to the computer.

A set of characters one after the other which the computer can

deal with. The last sentence could be thought of as a string -

note that spaces count as 'characters'. A distinction is usually

made between strings and numbers. The computer can perform

arithmetic on numbers but not on characters. Thus 4711 could

be a 'string' - simply four characters which could, for example,

be written backwards as 1174. Alternatively it could be a number

- four thousand seven hundred and eleven - which can be

multiplied or divided (etc.). However it would be meaningless

to say that the 'number' 4711 could be written backwards.

A person trained in the analysis of complex physical or or¬

ganisational problems and able to offer solutions calling on a

range of skills, one of which may involve the use of the computer

and computer programming.

Magnetic tape or punched paper tape can both be used to store

computer programs or data. Neither is as fast as disc systems

when it comes to finding the information stored but they do have

advantages - cheapness, for example.

Computer programs sent by telephone line or by television as

part of the teletext signal. With a suitable decoder the computer

program can be entered directly into the memory of a computer

and then 'run'. A new development.

An information service sent as a small part of the broadcast

television signal. With a suitable decoder the information can

be displayed on the home television screen as a series of 'pages'.

The BBC's service is called CEEFAX; the IBA's is ORACLE.

202

Terminal

Time-sharing

Transistor

Variable

VDU

(Visual Display Unit)

Videotex

Viewdata

Voice recognition

Voice synthesis

Volatile memory

Wand

A peripheral device usually consisting of a keyboard and a

screen which can link into a computer network sometimes using

a telephone line as the link.

A way of sharing out powerful computer facilities between a

number of users who want those facilities at the same time on a

number of separate terminals. Each user gets the impression that

he has sole use of the computer.

An electronic device which can act as a switch or an amplifier.

Individual transistors are found in portable radio sets and

amplifiers, but the transistor is also the building block of the

integrated circuit on the silicon chip, one of which may contain

thousands of transistors.

An electronic 'box' or pigeon hole into which data can be put

and subsequently be changed. A variable has a name and a value.

The name does not change but the value can. Variables can also

be 'numeric' or 'string' variables.

A television-like screen on which the output of the computer can

be displayed. The VDU is the most usual 'output peripheral

device' of the computer.

(Synonymous with viewdata.)

A way of receiving digital information at a distance and dis¬

playing it on a television-like screen. Viewdata can involve

telephone lines or television signals. (See Teletext, Prestel.)

The ability of a computer to match the pattern of signals coming

into it from a microphone with stored 'templates' held in its

electronic memory and thus recognise words.

The ability of the computer to use stored patterns of sounds

within its memory to assemble words which can be played

through a loudspeaker.

Memory in which information is lost when the power is switched

off.

A pen-like device able to read optically coded labels (see bar

codes).

203

Winchester disc

Word

Wordprocessing

A powerful form of back-up storage for a computer. It consists

of a rigid magnetic disc in a sealed container scanned by a head

which does not quite touch the disc, therefore not wearing it out.

When a computer operates it deals with groups of bits at a time.

The minimum number of bits which the central processor

handles at any one moment is called a 'word'. In a microcomputer

the word is usually eight bits long.

A powerful new office procedure for electronically storing,

editing and manipulating text using an electronic keyboard,

computer and printer. The text is recorded on a magnetic

medium rather than on paper, except for the final 'print-out'.

Index

Italic figures refer to captions to illustrations, 'gl.' means an entry in the glossary.

A
abacus 22, 23
accumulator 86-7, 98 gl.
acoustic coupler 180-1 gl.
activators 74, 148
actuators 43, 70, 76
address 83 gl.
air traffic control 12, 12, 13
ALGOL 96, 98 gl.
algorithm gl.
alphanumeric gl.
American Standard Code for Informa¬

tion Interchange 35

analogue gl.
analogue data 92-4, 92
analogue thermometer 93

analogue to digital conversion 93-4,
159

applications program 82, 142-3, 163

81-
arithmetic and logic unit (ALU) 86,

90 gl.
arrays 124-9 gl.
artificial intelligence gl.
ASCII 36 gl.
assemblers 98-9 gl.
assembly-language programming 96,

99 gl.
author languages 154 gl.
automation 177

B
Babbage, Charles 22

backing storage 40-1, 40, 139 gl.
back-up memory 88, 88

banking 183

bar codes 14, 15, 15, 16, 43, 171-2 gl.
BASIC as introduction to program¬

ming 96, 98-9; origins 105; dia¬
lects of 106, 116, 141-2; line
numbers in 107; variables in 112;
games programs in 149; gl.

baud rate gl.
Beginner's All-purpose Symbolic In¬

struction Code 105
bee keeping 161
binary-explanation of system 34, 34;

used by computer 35-8, 82, 92,

99-100, 148; conversion to hexa¬
decimals 97 gl.

binary machine code 98
Birmingham Micro Centre 162

bit 33, 37, 44, 100 gl.
bit patterns 35

book-keeping 155
books 30
branch gl.
break key 138
brewing industry 177, 179
BBC Computer 135, 144
British Telecom 180-1
bugs 123 gl.
burglar alarm systems 148
bus 90-1 gl.
business applications of computers

154-7
business games 154
byte 37, 44, 100

C
CAD gl.
CAL gl.
Cambridge Ring 182
Cambridge University 182
canal lock control 158-9, 158

cars 91
cash dispenser 114
cash register 91
cassette player 136

cassette recorder 135, 139-40, 143
cassette tapes 40, 41, 46, 88, 94, 94,

141 gl.
Caxton, William 30-1
Ceefax service 147, 180 gl.
central-heating controllers 91
central processor 36, 89-90, 90 gl.
characters 110, gl.
character generator 44
chemistry 153
chess 149-50, 150

chip 39, 87, 101, 104 gl; see also
silicon chip

choosing a system 161-2
COBOL 98 gl.
collision avoidance 12-13
Colossus I 25

command 109, 170 gl.
compiler gl.
computer clubs 150, 162, 164
computer literacy 4
computer power 4, 27, 28, 104
Concorde 10

content and context 72, 74
control by computers 158-9
control sensors 148
converter gl.
cookers 91
cost of computing 27, 27
crash gl.
cursor 138 gl.
cursor control keys 138,138

D

'daisy-wheel' printer 45, 45, 145 gl.
data 67, 83, 84, 85, 86, 90, 111, 115,

129; and instructions 64, 124, 127

databanks 180-1
database gl.
DATA statement 127
de-bugging gl.
decimal numbers 92
decision point 115, 154
decoding by computer 24
dedicated computer 87
dedicated microcomputer 80

delete key 138
diagnosis by computer 16, 18

dialects 99, 106, 109, 116, 141 gl.
digital computer 24
digital data 92, 92, 94, 146
digital to analogue conversion 94

digital thermometer 92-3
digital watch 92
digitising 18
DIM statement 125, 126, 128
disabled people 160, 160

disc (see floppy, hard) gl.
distribution 157-8
documentation 119
dopant 102

dot matrix heating element 46
dot matrix printer 44, 45, 95, 145 gl.
drill and practice programs 151

205

drudgery 172, 175

E

earning money 164

education programs 151

electrical meters 92

electronic clock 19

electronic counter 19

electronic pen 43

electronic piano tuner 70, 159

electronics 33

electronic sensor 14

ELSE instruction 116

engineering industry 164

engineering literacy 5, 6

Eniac 24, 26

Enigma encoding machine 24

enter key 138

EPROM 87 gl.

erasable programmable read-only

memory 87

error message 139

expanded systems 142

expansion box 142

expert system gl.

F

factories 177, 179

Ferranti 24

file gl.

finance programs 154

Firmware 83, 87 gl.

Fixture lists 50, 53—4, 56-9, 69, 72

floppy disc 40, 41, 48, 88, 89, 143

flow chart 59-64, 67-9, 115, 120, 128

gi-
flow diagram 115, 117

FOR-NEXT-loop 125, 129, 131

FORTRAN 96, 98 gl.

G

games 141, 145-6, 149-50, 153, 154,
154

game paddles 145-6

games programs 154

garbage gl.

GOTO statement 116
graphics tablet 43, 43

graphics 141, 141, 149, 163 gl.

greenhouse control 74, 75, 76
Gutenberg, Johann 30

H

handshaking gl.

hard copy gl.

hard disc 40, 41

hardware 77-8, 83, 84, 85, 104

heat sensitive paper 46

hexadecimals 97-8, gl.

hexadecimal keyboard 97

high-level language 80, 82, 96, 98-9,
107 gl.

I

IF . . . THEN statement 116

impact printer 44-5

impact technology 45

industrial revolution 5, 5

information 41-3, 91, 94, 108, 112,

148

information handling 20

information-storage 104

ink-jet printer 46

input 41-3, 70, 76, 90-1, 108, 111-12

g*-
INPUT instruction 113

input devices 36

input/output devices 148

input-output routines 99

instructions 78, 80-3, 87, 89, 107-11,

116; and data 64, 124, 127 gl.
integrated circuit 24, 26, 27 gl.

intelligence factor 81

interactive applications 99

interface gl.

interfacing 148

interpreter gl.

inverted commas 110-14,129

J

Jacquard's loom 78

Japanese 46, 101

jargon generator 124-5

jet engines 10-11,50

joystick control 145, 146, 150, 160

K

keyboard 41, 42, 42, 80, 138, 138,
157 gl.

keywords gl.

kilo gl.

L

language 80, 95-6, 105-7 gl.

language programs 154
language teaching 153-4

lateral thinking 58-9, 70, 72, 103
LCD gl.

learning programs 151

LED gl.

LET instruction 117,119

letters 156

light pen 43

line numbers 107

location 112 gl.

location name 124

logarithms 23

logical thinking 59

looping the loop 125

loops 61, 63, 127

low-level language 80 gl.

M

machine-code program 99 gl.

machine-coding 99

machine language 96

magnetic disc 88-9

mailing list program 156

mainframe computer 27-9, 28, 29, 31,

40, 48

mass literacy 31

mass storage 40

mathematics test for a child 33, 64,

120
memory 36, 38, 43^, 81, 87, 89 gl.

memory chip 39

memory location 37, 44, 83, 86-7

memory mapped systems 43

memory storage 40

menu-driven program gl.

micro gl.
microcomputer impact of 5, 11, 21,

30, 31; as word processor 20, 29,

156; components, of 37-41; out¬

put 43, 135, 136, 137; uses of 48,

80-1, 101, 134-5, 148-61, 172,

181-5; memory of 89, 99; soft¬

ware of 105-6, 136, 139, 141-3;

backing storage 140; gl.

microelectronics 4, 103 gl.
microprocessor 39, 90, 101 gl.

microprocessor controller 19

microwave ovens 91

mill-time 48
miniaturisation 104

mini-computers 27, 29, 29, 40 gl.

mnemonics 96, 98
modelling program 153

monitor 89, 137, 137

motor-control 139^40
music program 141

206

machine code 97, 97, 99

N

National Computer Centre 162

navigation 10

network gl.

newsagents 161

newspaper production 184

non-volatile memory 87-8
numbers 22, 110
numeric variable 112-13,124

O

office work 186-7

operating systems gl.

optical wand 14, 16, 43

Oracle system 180

output 43-6, 76, 86, 90-1, 94, 108 gl.

output devices 36, 43-6
P

package gl.

paddle 143, 150 gl.

paperless electronic office 22, 165,
176

paper tape 43

parity bit 100

parts of computer 36

Pascal 21 gl.

passwords 114-15, 117

peripheral devices 142, 144
peripherals 99, 157, 159, 163 gl.

personal computer 4, 48

physics 153

piano tuning 60, 60, 61, 64, 70-2, 70,

158-9

picture cells 18, 44

pixels 18, 44

plotters 46

pocket calculator 23, 23, 151

port gl.

portability gl.

pressure gauge 92

Prestel system 142, 146, 148, 180-1,

180, 188

printed circuit board (PCB) 89 gl.

printer 42-6, 95, 145, 156, 156, 157

printing industry 187, 189

PRINT instruction 108-11

print-out 156

problem solving 50-63, 66-74, 76,

168

processing time 48

processor 37-8, 48, 76, 86, 107 gl.
programmable machines 78

programming 7, 80, 105-6, 114

programs for problem solving 67-9;

writing 109,111,124,130-3,139,

141-2; storing 119, 139-41; func¬

tion of 78, 81-3, 91; languages of

98, 106; bugs in 123 gl.

PROM gl.

prompt 108

publishing 189

punched cards 43, 88

punctuation checking 185

punctuation marks 110-11

Q
QWERTY keyboard 42, 100, 100

R
radar 12, 12, 13

RAM chips 87, 90

RAM expansion 143

random-access memory (RAM) 87-9,

89, 90, 90 gl.

random locations 127

random number generator 67-8, 122,

124

random numbers 67-8, 122

read command 127

read-only memory (ROM) chips 87,

89, 90, 143 gl.

read/write head 41, 89

read/write memory 87

real time gl.

REM statement 119-20, 128

return key 138-9

ring circuitry 182

road network analysis 157

robots 91, 171, 173, 175, 177, 178 gl.

ROM chips 87, 89-90

route finding 50-1, 54-8, 61^4, 69,

128, 130-2, 188

RUN command 109

S
satellite communications 21

scanning 18 gl.

schools 134, 151, 183

searching 13, 32, 47

search routines 156

sensors 42, 70, 74, 76

servicing 163

silicon chip 4, 19, 27, 27, 38, 89, 101,
102, 103

simulation programs 153

slide rule 23, 23

software 78, 82, 84, 85, 99, 104, 107,

142, 155, 164 gl.

sorting information 69

sound input/output 170

speech output 43, 171

speech recognition 43, 160

speed of computers 37, 47, 48

spelling correction program 48, 166,

170, 185

spelling tester 151

spoken word 170

statements 109 gl.

stock control 50, 157, 157, 175

storage gl.

storage location 112

string 110, 112 gl.

string array 129

string variable 112-13

Sutton, Henry 22

syntax error 117, 123

systems analyst gl.

T

tape cassette 88, 136, 139

telephone directory 13, 14, 100

telesoftware 142, 147, 148, 181 gl.

teletext 146, 147, 148, 180-1 gl.

teletypewriter 44

television games 91

television screen 135, 136, 137, 137,

146, 149, 153

temperature 42, 91, 93, 93

temperature sensors 11, 36, 148

terminal 179 gl.

thermal printer 46, 145, 145

thermionic radio valve 27

thermometer 92

thimble printer 145

timesharing 28-9 gl.

timesharing systems 179

transistor 24, 26, 27, 27, 33, 39, 101,

103 gl.

translation program 98

tutorial program 152, 152

U

user definable keys 138, 138

V
variables 112-14, 117, 119, 124-6,

128 gl.

207

video display unit (VDU) 43, 179 gl.

video monitor 137

video screen 42

videotex gl.

viewdata 146, 148, 180-1 gl.

vision input/output 170

voice input 95

Picture Credits

208

voice output 95

voice recognition 167, 171 gl.

voice synthesis 171 gl.

volatile memory 87 gl.

W

watches 91

weather forecasting 8, 9

Winchester disc 41 gl.

word (unit of data) gl.

word processing 20, 45, 137, 155-6

gi-
word processor 20, 21, 21, 156, 184

words 170

APPLIED COMPUTER TECHNIQUES LTD p.156; BARNABY'S PICTURE LIBRARY/

MUSTOGRAPH p.158; BBC ENGINEERING DIVISION p.16 top, p.17 top left, p.147

top, p.166/7, p. 171; BBC HULTON PICTURE LIBRARY p.79 top left, p.169; BBC

picture publicity p.32, p.147 centre; British aerospace p.10; b.f.i.

ELECTRONICS LTD p.40 below right; BRITISH LIBRARY p.31 ; BRITISH TELECOM

p.180; cps (data systems) ltd p.162; ronald a. chapman p.102 (3 photos);

COMARK ELECTRONICS LTD p.92 right; COMPUTER AIDED DESIGN CENTRE p.165;

COSSOR ELECTRONICS p.12; C.W. CAVE AND TAB LTD p.40 Centre,* CROWN

copyright, reproduced with the permission of the Controller of h.m.s.o. p.40

right; crown copyright, public record office (fo 850/234) p.25; crown

COPYRIGHT, SCIENCE MUSEUM LONDON p.22a,b,e,f, and g; DALLAS INDEPENDENT

SCHOOL DISTRICT p.152 top; DEUTSCHE PRESS-AGENTUR, FRANKFURT p.34 left;

EDUCATIONAL COMPUTING p.6; FERRANTI p.102 bottom; F. INTERNATIONAL

p.159; FORD OF BRITAIN p.178 bottom; BURRELL COLLECTION, GLASGOW

MUSEUMS & ART GALLERY p.49 right,* GROSVENOR MUSEUM, CHESTER p.22c;

HALL AUTOMATION p.173,* HONEYWELL INFORMATION SYSTEMS p.191 ;

hewlett-packard p.46; ibm p.21 left & right, p.28; IC DETECTOR and

precision optics p.17 top right; international computers ltd p. 168;

INTELMATIQUE p.14; I.F.S. (PUBLICATIONS) LTD p.174 top; INSTITUTE OF DESIGN,

Illinois institute of technology Chicago (Charles L. Owen and Paul

Lionikis) p.ll left; itt, footscray p.39 below left & right, p.102 centre right;

LONDON TRANSPORT p.5; MANSELL COLLECTION p.22d; DON MONROE p.ll right;

MOORE SCHOOL OF ELECTRICAL ENGINEERING, UNIVERSITY OF PENNSYLVANIA

p.26; motorola p.97; mullard ltd p.27 (3 photos); the musical museum,

LONDON p.79 right; NATIONAL institute of agricultural engineering,

SILSOE p.75, p.149; PLESSEY COMMUNICATIONS & DATA SYSTEMS LTD p.183,*

PRESSED STEEL FISHER p.178 (2 top photos); SAINSBURY'S p.15; SERVICE

audiovisuel (Document Exterieur Archive) p.187; servis p.19; sharp

ELECTRONICS (UK) LTD p.23j,* SINCLAIR RESEARCH LTD p.42, p.145,* BRIAN

SMITH, R.C.A. p. 152 bottom; TEXAS INSTRUMENTS, BEDFORD p.23i, p.29 right,

p.40 below left, p.157, p.186; universal computers ltd p.29 left;

UNIVERSITY OF DUNDEE, ELECTRONICS LABORATORY p.9; ARTHUR VIALLS p.39

top right, p.88; vnu business publications bv p.150, p.165.

The photographs at the bottom of pages 16 and 17 were taken by courtesy of

Bangour Hospital, Scotland.

Technical illustrations by Len Huxter

Diagrams and flow charts by Hugh Ribbans

Cartoons by Loise Voce

£6.75

Computers are affecting all of us in one way or another - and they’ll do so
more and more as the years go by. They’re finding their way into banks,
offices, shops, schools, onto the factory floor and now into the home.

As everything else goes up in price, computer power is the one commodity
which is becoming cheaper each year, bringing the personal microcomputer
now within the reach of an increasingly large number of people.

What does the computer mean to you ?

An opportunity ? A threat ? A mystery ? Something only for young people ?
Something surrounded in incomprehensible gobbledegook ? Gas bills ? Space
Invaders ? Something to increase the efficiency of your business ? A challenging
new hobby ?

Whatever your view, this book will help you to learn what it’s all about - what
this hitherto mysterious technology could mean for you or your children.

Do you know a RAM from a ROM ? Do big computers and the very small

ones work in the same way ? What is binary code ? What is BASIC ? Can

anyone learn it ?

Even more confused ? Then this could be the book for you. It attempts to
answer these questions and many more. It is written for the layman. Using
plain English it explains what computers do for us in the modern world, how
and why they have developed and how they work. It looks at the business of
problem solving and reminds us that computers don’t solve problems, we do.
It provides an introduction to programming and to what it’s like to own a
personal microcomputer. It explores how the microcomputer can be used as
a tool in a whole range of areas as well as leading to a compelling new hobby
and a lot of fun for young and old. Finally it takes a look into the future to
see where this technological revolution might be taking us and what its
limitations are.

